Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
FASEB J ; 33(2): 2659-2668, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30307766

RESUMO

Intimal hyperplasia is a reaction to vascular injury, which is the primary reason for vascular restenosis caused by the diagnostic or therapeutic procedure for cardiovascular diseases. Circular RNAs (circRNAs) are known to be associated with several cardiovascular conditions, but the expression of circRNAs in the neointima has not been reported in detail. In this study, we established the balloon-injured rat carotid artery model and detected the expression of circRNAs in the carotid arteries with a microarray. We found that the circRNA expression profile of the healthy carotid arteries and the injured arteries were significantly different. We investigated the role of rno-circ_005717 ( circDiaph3) in the differentiation of rat vascular smooth muscle cells (VSMCs). We found that knockdown of circDiaph3 up-regulated the level of diaphanous-related formin-3 and promoted the differentiation of VSMCs to contractile type. In addition, circDiaph3 up-regulated the transcription of Igf1r and supported the proliferation and migration of VSMCs. circDiaph3 could be a molecular target to combat intimal hyperplasia.-Xu, J.-Y., Chang, N.-B., Rong, Z.-H., Li, T., Xiao, L., Yao, Q.-P., Jiang, R., Jiang, J. circDiaph3 regulates rat vascular smooth muscle cell differentiation, proliferation, and migration.


Assuntos
Artérias Carótidas/citologia , Lesões das Artérias Carótidas/patologia , Diferenciação Celular , Movimento Celular , Proliferação de Células , Músculo Liso Vascular/citologia , RNA/genética , Animais , Artérias Carótidas/metabolismo , Lesões das Artérias Carótidas/genética , Lesões das Artérias Carótidas/metabolismo , Células Cultivadas , Masculino , MicroRNAs/genética , MicroRNAs/metabolismo , Músculo Liso Vascular/metabolismo , Neointima/metabolismo , Neointima/patologia , RNA Circular , Ratos , Ratos Sprague-Dawley , Receptores de Somatomedina/genética , Receptores de Somatomedina/metabolismo
2.
J Cell Physiol ; 234(9): 15225-15234, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30656680

RESUMO

Intimal hyperplasia is an important cause of stenosis or occlusion after vascular injury. Circular RNAs (circRNAs) are known to be related to various cardiovascular diseases. However, the expression profile of circRNAs in the neointima has not been reported in detail. In this study, we established a rat common carotid artery (CCA) injury model. A microarray detection showed significant differences in circRNA expression between the normal and injured CCA. Real-time quantitative polymerase chain reaction verified the differences. We used bioinformatics to predict the microRNAs that possibly interact with the differentially expressed (DE) circRNAs and linked the potential functions of circRNAs to the target genes of the microRNAs. We believe that the DE circRNA in neointima may affect the differentiation, proliferation, and migration of vascular cells through a variety of target genes. The intervention or utilization of certain circRNAs should be a new method for preventing and treating intimal hyperplasia.

3.
Mol Ther Nucleic Acids ; 18: 999-1008, 2019 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-31778958

RESUMO

We replicated the rat common carotid artery (CCA) intima hyperplasia model and found the expression of a circular RNA, circRNA_009723 (circDcbld1), was markedly increased in the CCA with intimal hyperplasia. In vitro, the suppression of circDcbld1 in rat vascular smooth muscle cells (VSMCs) led the increase of contractile smooth muscle cell markers and the decrease of cell migration. In vivo, the injection of chemically modified circDcbld1 small interfering RNA (siRNA) lessened the formation of neointima in rat CCA after balloon injury. Further experiments proved that circDcbld1, as a competing endogenous RNA, interacted with miR-145-3p and upregulated the level of neuropilin-1 (Nrp1), thereby regulating the migration of VSMCs. In this study, we demonstrated a new mechanism by which circular RNA promotes intimal hyperplasia. We deem that intervention in the circDcbld1-miR-145-3p/Nrp1 pathway might be a feasible approach to alleviate the post-injury intimal hyperplasia.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA