Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Biochem J ; 477(20): 3985-3999, 2020 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-33034621

RESUMO

Ryanodine receptors are responsible for the massive release of calcium from the sarcoplasmic reticulum that triggers heart muscle contraction. Maurocalcin (MCa) is a 33 amino acid peptide toxin known to target skeletal ryanodine receptor. We investigated the effect of MCa and its analog MCaE12A on isolated cardiac ryanodine receptor (RyR2), and showed that they increase RyR2 sensitivity to cytoplasmic calcium concentrations promoting channel opening and decreases its sensitivity to inhibiting calcium concentrations. By measuring intracellular Ca2+ transients, calcium sparks and contraction on cardiomyocytes isolated from adult rats or differentiated from human-induced pluripotent stem cells, we demonstrated that MCaE12A passively penetrates cardiomyocytes and promotes the abnormal opening of RyR2. We also investigated the effect of MCaE12A on the pacemaker activity of sinus node cells from different mice lines and showed that, MCaE12A improves pacemaker activity of sinus node cells obtained from mice lacking L-type Cav1.3 channel, or following selective pharmacologic inhibition of calcium influx via Cav1.3. Our results identify MCaE12A as a high-affinity modulator of RyR2 and make it an important tool for RyR2 structure-to-function studies as well as for manipulating Ca2+ homeostasis and dynamic of cardiac cells.


Assuntos
Cálcio/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Venenos de Escorpião/farmacologia , Nó Sinoatrial/efeitos dos fármacos , Potenciais de Ação/efeitos dos fármacos , Animais , Sinalização do Cálcio/efeitos dos fármacos , Citoplasma/efeitos dos fármacos , Citoplasma/metabolismo , Homeostase , Humanos , Masculino , Camundongos , Camundongos Knockout , Miócitos Cardíacos/metabolismo , Células-Tronco Pluripotentes , Ratos , Ratos Wistar , Retículo Sarcoplasmático/efeitos dos fármacos , Retículo Sarcoplasmático/metabolismo , Venenos de Escorpião/química , Nó Sinoatrial/citologia , Nó Sinoatrial/fisiologia , Suínos
2.
Int J Mol Sci ; 21(19)2020 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-32998413

RESUMO

IKr current, a major component of cardiac repolarization, is mediated by human Ether-à-go-go-Related Gene (hERG, Kv11.1) potassium channels. The blockage of these channels by pharmacological compounds is associated to drug-induced long QT syndrome (LQTS), which is a life-threatening disorder characterized by ventricular arrhythmias and defects in cardiac repolarization that can be illustrated using cardiomyocytes derived from human-induced pluripotent stem cells (hiPS-CMs). This study was meant to assess the modification in hiPS-CMs excitability and contractile properties by BeKm-1, a natural scorpion venom peptide that selectively interacts with the extracellular face of hERG, by opposition to reference compounds that act onto the intracellular face. Using an automated patch-clamp system, we compared the affinity of BeKm-1 for hERG channels with some reference compounds. We fully assessed its effects on the electrophysiological, calcium handling, and beating properties of hiPS-CMs. By delaying cardiomyocyte repolarization, the peptide induces early afterdepolarizations and reduces spontaneous action potentials, calcium transients, and contraction frequencies, therefore recapitulating several of the critical phenotype features associated with arrhythmic risk in drug-induced LQTS. BeKm-1 exemplifies an interesting reference compound in the integrated hiPS-CMs cell model for all drugs that may block the hERG channel from the outer face. Being a peptide that is easily modifiable, it will serve as an ideal molecular platform for the design of new hERG modulators displaying additional functionalities.


Assuntos
Cálcio/metabolismo , Canal de Potássio ERG1/antagonistas & inibidores , Miócitos Cardíacos/efeitos dos fármacos , Bloqueadores dos Canais de Potássio/farmacologia , Potássio/metabolismo , Venenos de Escorpião/farmacologia , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Antiarrítmicos/farmacologia , Canais de Cálcio/metabolismo , Diferenciação Celular , Canal de Potássio ERG1/metabolismo , Células HEK293 , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/metabolismo , Transporte de Íons , Síndrome do QT Longo/metabolismo , Síndrome do QT Longo/fisiopatologia , Modelos Biológicos , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Técnicas de Patch-Clamp , Fenetilaminas/farmacologia , Piperidinas/farmacologia , Piridinas/farmacologia , Sulfonamidas/farmacologia
3.
Proc Natl Acad Sci U S A ; 113(17): E2460-8, 2016 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-27071086

RESUMO

The venom peptide maurocalcin (MCa) is atypical among toxins because of its ability to rapidly translocate into cells and potently activate the intracellular calcium channel type 1 ryanodine receptor (RyR1). Therefore, MCa is potentially subjected to posttranslational modifications within recipient cells. Here, we report that MCa Thr(26) belongs to a consensus PKA phosphorylation site and can be phosphorylated by PKA both in vitro and after cell penetration in cellulo. Unexpectedly, phosphorylation converts MCa from positive to negative RyR1 allosteric modulator. Thr(26) phosphorylation leads to charge neutralization of Arg(24), a residue crucial for MCa agonist activity. The functional effect of Thr(26) phosphorylation is partially mimicked by aspartyl mutation. This represents the first case, to our knowledge, of both ex situ posttranslational modification and pharmacological reprogramming of a small natural cystine-rich peptide by target cells. So far, phosphorylated MCa is the first specific negative allosteric modulator of RyR1, to our knowledge, and represents a lead compound for further development of phosphatase-resistant analogs.


Assuntos
Venenos de Escorpião/metabolismo , Cálcio/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Células HEK293 , Homeostase , Humanos , Fosforilação , Processamento de Proteína Pós-Traducional , Canal de Liberação de Cálcio do Receptor de Rianodina/efeitos dos fármacos , Venenos de Escorpião/farmacologia
4.
Molecules ; 24(2)2019 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-30634526

RESUMO

The medical staff is often powerless to treat patients affected by drug abuse or misuse and poisoning. In the case of envenomation, the treatment of choice remains horse sera administration that poses a wealth of other medical conditions and threats. Previously, we have demonstrated that DNA-based aptamers represent powerful neutralizing tools for lethal animal toxins of venomous origin. Herein, we further pursued our investigations in order to understand whether all toxin-interacting aptamers possessed equivalent potencies to neutralize αC-conotoxin PrXA in vitro and in vivo. We confirmed the high lethality in mice produced by αC-conotoxin PrXA regardless of the mode of injection and further characterized myoclonus produced by the toxin. We used high-throughput patch-clamp technology to assess the effect of αC-conotoxin PrXA on ACh-mediated responses in TE671 cells, responses that are carried by muscle-type nicotinic receptors. We show that 2 out of 4 aptamers reduce the affinity of the toxin for its receptor, most likely by interfering with the pharmacophore. In vivo, more complex responses on myoclonus and mice lethality are observed depending on the type of aptamer and mode of administration (concomitant or differed). Concomitant administration always works better than differed administration indicating the stability of the complex in vivo. The most remarkable conclusion is that an aptamer that has no or a limited efficacy in vitro may nevertheless be functional in vivo probably owing to an impact on the biodistribution or pharmacokinetics of the toxin in vivo. Overall, the results highlight that a blind selection of aptamers against toxins leads to efficient neutralizing compounds in vivo regardless of the mode of action. This opens the door to the use of aptamer mixtures as substitutes to horse sera for the neutralization of life-threatening animal venoms, an important WHO concern in tropical areas.


Assuntos
Aptâmeros de Nucleotídeos/administração & dosagem , Conotoxinas/toxicidade , Mioclonia/prevenção & controle , Animais , Aptâmeros de Nucleotídeos/farmacologia , Linhagem Celular , Modelos Animais de Doenças , Feminino , Masculino , Camundongos , Mioclonia/mortalidade , Receptores Nicotínicos/metabolismo , Técnica de Seleção de Aptâmeros
5.
J Biol Chem ; 292(22): 9365-9381, 2017 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-28377503

RESUMO

Voltage-dependent Ca2+ channels (VDCCs) mediate neurotransmitter release controlled by presynaptic proteins such as the scaffolding proteins Rab3-interacting molecules (RIMs). RIMs confer sustained activity and anchoring of synaptic vesicles to the VDCCs. Multiple sites on the VDCC α1 and ß subunits have been reported to mediate the RIMs-VDCC interaction, but their significance is unclear. Because alternative splicing of exons 44 and 47 in the P/Q-type VDCC α1 subunit CaV2.1 gene generates major variants of the CaV2.1 C-terminal region, known for associating with presynaptic proteins, we focused here on the protein regions encoded by these two exons. Co-immunoprecipitation experiments indicated that the C-terminal domain (CTD) encoded by CaV2.1 exons 40-47 interacts with the α-RIMs, RIM1α and RIM2α, and this interaction was abolished by alternative splicing that deletes the protein regions encoded by exons 44 and 47. Electrophysiological characterization of VDCC currents revealed that the suppressive effect of RIM2α on voltage-dependent inactivation (VDI) was stronger than that of RIM1α for the CaV2.1 variant containing the region encoded by exons 44 and 47. Importantly, in the CaV2.1 variant in which exons 44 and 47 were deleted, strong RIM2α-mediated VDI suppression was attenuated to a level comparable with that of RIM1α-mediated VDI suppression, which was unaffected by the exclusion of exons 44 and 47. Studies of deletion mutants of the exon 47 region identified 17 amino acid residues on the C-terminal side of a polyglutamine stretch as being essential for the potentiated VDI suppression characteristic of RIM2α. These results suggest that the interactions of the CaV2.1 CTD with RIMs enable CaV2.1 proteins to distinguish α-RIM isoforms in VDI suppression of P/Q-type VDCC currents.


Assuntos
Canais de Cálcio Tipo N/metabolismo , Canais de Cálcio/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Animais , Canais de Cálcio/genética , Canais de Cálcio Tipo N/genética , Proteínas de Ligação ao GTP/genética , Células HEK293 , Humanos , Camundongos , Proteínas do Tecido Nervoso/genética , Domínios Proteicos
6.
Biochem J ; 473(13): 1831-44, 2016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-27354560

RESUMO

Calcium plays a key role in cell signalling by its intervention in a wide range of physiological processes. Its entry into cells occurs mainly via voltage-gated calcium channels (VGCC), which are found not only in the plasma membrane of excitable cells but also in cells insensitive to electrical signals. VGCC are composed of different subunits, α1, ß, α2δ and γ, among which the cytosolic ß subunit (Cavß) controls the trafficking of the channel to the plasma membrane, its regulation and its gating properties. For many years, these were the main functions associated with Cavß. However, a growing number of proteins have been found to interact with Cavß, emphasizing the multifunctional role of this versatile protein. Interestingly, some of the newly assigned functions of Cavß are independent of its role in the regulation of VGCC, and thus further increase its functional roles. Based on the identity of Cavß protein partners, this review emphasizes the diverse cellular functions of Cavß and summarizes both past findings as well as recent progress in the understanding of VGCC.


Assuntos
Canais de Cálcio/metabolismo , Animais , Cálcio/metabolismo , Canais de Cálcio/química , Membrana Celular/metabolismo , Humanos , Ligação Proteica , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo
7.
EMBO J ; 31(18): 3730-44, 2012 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-22892567

RESUMO

Calcium current through voltage-gated calcium channels (VGCC) controls gene expression. Here, we describe a novel signalling pathway in which the VGCC Cacnb4 subunit directly couples neuronal excitability to transcription. Electrical activity induces Cacnb4 association to Ppp2r5d, a regulatory subunit of PP2A phosphatase, followed by (i) nuclear translocation of Cacnb4/Ppp2r5d/PP2A, (ii) association with the tyrosine hydroxylase (TH) gene promoter through the nuclear transcription factor thyroid hormone receptor alpha (TRα), and (iii) histone binding through association of Cacnb4 with HP1γ concomitantly with Ser(10) histone H3 dephosphorylation by PP2A. This signalling cascade leads to TH gene repression by Cacnb4 and is controlled by the state of interaction between the SH3 and guanylate kinase (GK) modules of Cacnb4. The human R482X CACNB4 mutation, responsible for a form of juvenile myoclonic epilepsy, prevents association with Ppp2r5 and nuclear targeting of the complex by altering Cacnb4 conformation. These findings demonstrate that an intact VGCC subunit acts as a repressor recruiting platform to control neuronal gene expression.


Assuntos
Canais de Cálcio/biossíntese , Canais de Cálcio/genética , Epilepsias Mioclônicas/metabolismo , Regulação da Expressão Gênica , Transporte Ativo do Núcleo Celular , Animais , Biofísica/métodos , Canais de Cálcio/metabolismo , Eletrofisiologia/métodos , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Histonas/metabolismo , Humanos , Camundongos , Mutação , Proteína Fosfatase 2/metabolismo , Transdução de Sinais , Receptores alfa dos Hormônios Tireóideos/metabolismo , Transcrição Gênica
8.
Biochim Biophys Acta ; 1843(10): 2356-64, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24667409

RESUMO

L-Maurocalcine (L-MCa) is the first reported animal cell-penetrating toxin. Characterizing its cell penetration properties is crucial considering its potential as a vector for the intracellular delivery of drugs. Radiolabeling is a sensitive and quantitative method to follow the cell accumulation of a molecule of interest. An L-MCa analog containing an additional N-terminal tyrosine residue (Tyr-L-MCa) was synthesized, shown to fold and oxidize properly, and successfully radioiodinated to (125)I-Tyr-L-MCa. Using various microscopy techniques, the average volume of the rat line F98 glioma cells was evaluated at 8.9 to 18.9×10(-7)µl. (125)I-Tyr-L-MCa accumulates within cells with a dose-dependency similar to the one previously published using 5,6-carboxyfluorescein-L-MCa. According to subcellular fractionation of F98 cells, plasma membranes keep less than 3% of the peptide, regardless of the extracellular concentration, while the nucleus accumulates over 75% and the cytosol around 20% of the radioactive material. Taking into account both nuclear and cytosolic fractions, cells accumulate intracellular concentrations of the peptide that are equal to the extracellular concentrations. Estimation of (125)I-Tyr-L-MCa cell entry kinetics indicate a first rapid phase with a 5min time constant for the plasma membrane followed by slower processes for the cytoplasm and the nucleus. Once inside cells, the labeled material no longer escapes from the intracellular environment since 90% of the radioactivity remains 24h after washout. Dead cells were found to have a lower uptake than live ones. The quantitative information gained herein will be useful for better framing the use of L-MCa in biotechnological applications. This article is part of a Special Issue entitled: Calcium Signaling in Health and Disease. Guest Editors: Geert Bultynck, Jacques Haiech, Claus W. Heizmann, Joachim Krebs, and Marc Moreau.


Assuntos
Membrana Celular/metabolismo , Peptídeos Penetradores de Células/metabolismo , Venenos de Escorpião/metabolismo , Tirosina/química , Sequência de Aminoácidos , Animais , Transporte Biológico , Linhagem Celular Tumoral , Permeabilidade da Membrana Celular , Núcleo Celular/metabolismo , Tamanho Celular , Peptídeos Penetradores de Células/síntese química , Citosol/metabolismo , Portadores de Fármacos , Radioisótopos do Iodo , Cinética , Modelos Moleculares , Dados de Sequência Molecular , Dobramento de Proteína , Ratos , Venenos de Escorpião/síntese química , Técnicas de Síntese em Fase Sólida
9.
J Biol Chem ; 287(21): 17331-17342, 2012 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-22433862

RESUMO

Maurocalcine is the first demonstrated example of an animal toxin peptide with efficient cell penetration properties. Although it is a highly competitive cell-penetrating peptide (CPP), its relatively large size of 33 amino acids and the presence of three internal disulfide bridges may hamper its development for in vitro and in vivo applications. Here, we demonstrate that several efficient CPPs can be derived from maurocalcine by replacing Cys residues by isosteric 2-aminobutyric acid residues and sequence truncation down to peptides of up to 9 residues in length. A surprising finding is that all of the truncated maurocalcine analogues possessed cell penetration properties, indicating that the maurocalcine is a highly specialized CPP. Careful examination of the cell penetration properties of the truncated analogues indicates that several maurocalcine-derived peptides should be of great interest for cell delivery applications where peptide size matters.


Assuntos
Peptídeos Penetradores de Células/farmacologia , Venenos de Escorpião/farmacologia , Animais , Células CHO , Peptídeos Penetradores de Células/síntese química , Peptídeos Penetradores de Células/química , Cricetinae , Cricetulus , Venenos de Escorpião/síntese química , Venenos de Escorpião/química
10.
Biochem J ; 441(2): 731-41, 2012 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-21995425

RESUMO

In the present study we provide evidence that SRP-35, a protein we identified in rabbit skeletal muscle sarcoplasmic reticulum, is an all-trans-retinol dehydrogenase. Analysis of the primary structure and tryptic digestion revealed that its N-terminus encompasses a short hydrophobic sequence bound to the sarcoplasmic reticulum membrane, whereas its C-terminal catalytic domain faces the myoplasm. SRP-35 is also expressed in liver and adipocytes, where it appears in the post-microsomal supernatant; however, in skeletal muscle, SRP-35 is enriched in the longitudinal sarcoplasmic reticulum. Sequence comparison predicts that SRP-35 is a short-chain dehydrogenase/reductase belonging to the DHRS7C [dehydrogenase/reductase (short-chain dehydrogenase/reductase family) member 7C] subfamily. Retinol is the substrate of SRP-35, since its transient overexpression leads to an increased production of all-trans-retinaldehyde. Transfection of C2C12 myotubes with a fusion protein encoding SRP-35-EYFP (enhanced yellow fluorescent protein) causes a decrease of the maximal Ca²âº released via RyR (ryanodine receptor) activation induced by KCl or 4-chloro-m-chresol. The latter result could be mimicked by the addition of retinoic acid to the C2C12 cell tissue culture medium, a treatment which caused a significant reduction of RyR1 expression. We propose that in skeletal muscle SRP-35 is involved in the generation of all-trans-retinaldehyde and may play an important role in the generation of intracellular signals linking Ca2+ release (i.e. muscle activity) to metabolism.


Assuntos
Oxirredutases do Álcool/metabolismo , Proteínas Musculares/metabolismo , Sequência de Aminoácidos , Animais , Cálcio/metabolismo , Linhagem Celular , Células HEK293 , Humanos , Dados de Sequência Molecular , Contração Muscular , Fibras Musculares Esqueléticas/metabolismo , Proteínas Musculares/química , Proteínas Musculares/isolamento & purificação , Músculo Esquelético/metabolismo , NAD/metabolismo , Coelhos , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Retículo Sarcoplasmático/metabolismo , Distribuição Tecidual
11.
Toxins (Basel) ; 14(2)2022 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-35202107

RESUMO

α-bungarotoxin is a large, 74 amino acid toxin containing five disulphide bridges, initially identified in the venom of Bungarus multicinctus snake. Like most large toxins, chemical synthesis of α-bungarotoxin is challenging, explaining why all previous reports use purified or recombinant α-bungarotoxin. However, only chemical synthesis allows easy insertion of non-natural amino acids or new chemical functionalities. Herein, we describe a procedure for the chemical synthesis of a fluorescent-tagged α-bungarotoxin. The full-length peptide was designed to include an alkyne function at the amino-terminus through the addition of a pentynoic acid linker. Chemical synthesis of α-bungarotoxin requires hydrazide-based coupling of three peptide fragments in successive steps. After completion of the oxidative folding, an azide-modified Cy5 fluorophore was coupled by click chemistry onto the toxin. Next, we determined the efficacy of the fluorescent-tagged α-bungarotoxin to block acetylcholine (ACh)-mediated currents in response to muscle nicotinic receptor activation in TE671 cells. Using automated patch-clamp recordings, we demonstrate that fluorescent synthetic α-bungarotoxin has the expected nanomolar affinity for the nicotinic receptor. The blocking effect of fluorescent α-bungarotoxin could be displaced by incubation with a 20-mer peptide mimicking the α-bungarotoxin binding site. In addition, TE671 cells could be labelled with fluorescent toxin, as witnessed by confocal microscopy, and this labelling was partially displaced by the 20-mer competitive peptide. We thus demonstrate that synthetic fluorescent-tagged α-bungarotoxin preserves excellent properties for binding onto muscle nicotinic receptors.


Assuntos
Bungarotoxinas/síntese química , Bungarotoxinas/farmacologia , Inibidores da Colinesterase/síntese química , Inibidores da Colinesterase/farmacologia , Corantes Fluorescentes/química , Acetilcolina , Linhagem Celular , Química Click , Ensaios de Triagem em Larga Escala , Humanos , Modelos Moleculares , Conformação Proteica
12.
Stem Cell Res ; 60: 102688, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35101670

RESUMO

Catecholaminergic Polymorphic Ventricular Tachycardia (CPVT) is an exercise and emotional stress-induced life-threatening inherited heart rhythm disorder, characterized by an abnormal cellular calcium homeostasis. Most reported cases have been linked to mutations in the gene encoding the type 2 ryanodine receptor gene, RYR2. We generated induced pluripotent stem cells (hiPSCs) from peripheral blood mononuclear cells (PBMC) from three CPVT-affected patients, two of them carrying p.R4959Q mutation and one carrying p.Y2476D mutation. These generated hiPSC lines are a useful model to study pathophysiological consequences of RYR2 dysfunction in humans and the molecular basis of CPVT.


Assuntos
Células-Tronco Pluripotentes Induzidas , Cálcio/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Leucócitos Mononucleares/metabolismo , Mutação/genética , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Taquicardia Ventricular
13.
J Biol Chem ; 285(44): 34168-80, 2010 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-20610396

RESUMO

Maurocalcine has been the first demonstrated animal toxin acting as a cell-penetrating peptide. Although it possesses competitive advantages, its use as a cell-penetrating peptide (CPP) requires that analogues be developed that lack its characteristic pharmacological activity on ryanodine-sensitive calcium channels without affecting its cell-penetrating and vector efficiencies. Here, we present the synthesis, three-dimensional (1)H NMR structure, and activity of D-maurocalcine. We demonstrate that it possesses all of the desired features for an excellent CPP: preserved structure, lack of pharmacological action, conserved vector properties, and absence of cell toxicity. This is the first report of a folded/oxidized animal toxin in its D-diastereomer conformation for use as a CPP. The protease resistance of this new peptide analogue, combined with its efficient cell penetration at concentrations devoid of cell toxicity, suggests that D-maurocalcine should be an excellent vector for in vivo applications.


Assuntos
Peptídeos/química , Venenos de Escorpião/química , Animais , Células CHO , Canais de Cálcio/química , Membrana Celular/metabolismo , Dicroísmo Circular , Cricetinae , Cricetulus , Fluoresceínas/química , Espectroscopia de Ressonância Magnética/métodos , Microscopia Confocal/métodos , Peptídeo Hidrolases/química , Rianodina/química , Venenos de Escorpião/farmacologia , Sais de Tetrazólio/farmacologia , Tiazóis/farmacologia
14.
Biochim Biophys Acta ; 1793(6): 1096-104, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19250948

RESUMO

Ca2+ is the most widely used second messenger in cell biology and fulfills a plethora of essential cell functions. One of the most exciting findings of the last decades was the involvement of Ca2+ in the regulation of long-term cell adaptation through its ability to control gene expression. This finding provided a link between cell excitation and gene expression. In this review, we chose to focus on the role of voltage-dependent calcium channels in mediating gene expression in response to membrane depolarization. We illustrate the different pathways by which these channels are involved in excitation-transcription coupling, including the most recent Ca2+ ion-independent strategies that highlight the transcription factor role of calcium channels.


Assuntos
Canais de Cálcio/metabolismo , Cálcio/metabolismo , Regulação da Expressão Gênica , Animais , Canais de Cálcio/genética , Humanos , Modelos Biológicos , Sistemas do Segundo Mensageiro/fisiologia , Fatores de Transcrição/metabolismo
15.
Sci Rep ; 10(1): 9835, 2020 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-32555258

RESUMO

Sinus node (SAN) dysfunction (SND) manifests as low heart rate (HR) and is often accompanied by atrial tachycardia or atrioventricular (AV) block. The only currently available therapy for chronic SND is the implantation of an electronic pacemaker. Because of the growing burden of SND in the population, new pharmacological therapies of chronic SND and heart block are desirable. We developed a collection of genetically modified mouse strains recapitulating human primary SND associated with different degrees of AV block. These mice were generated with genetic ablation of L-type Cav1.3 (Cav1.3-/-), T-type Cav3.1 (Cav3.1-/-), or both (Cav1.3-/-/Cav3.1-/-). We also studied mice haplo-insufficient for the Na+ channel Nav1.5 (Nav1.5+/) and mice in which the cAMP-dependent regulation of hyperpolarization-activated f-(HCN4) channels has been abolished (HCN4-CNBD). We analysed, by telemetric ECG recording, whether pharmacological inhibition of the G-protein-activated K+ current (IKACh) by the peptide tertiapin-Q could improve HR and AV conduction in these mouse strains. Tertiapin-Q significantly improved the HR of Cav1.3-/- (19%), Cav1.3-/-/Cav3.1-/- (23%) and HCN4-CNBD (14%) mice. Tertiapin-Q also improved cardiac conduction of Nav1.5+/- mice by 24%. Our data suggest that the development of pharmacological IKACh inhibitors for the management of SND and conduction disease is a viable approach.


Assuntos
Venenos de Abelha/farmacologia , Bradicardia/fisiopatologia , Proteínas de Ligação ao GTP/metabolismo , Sistema de Condução Cardíaco/efeitos dos fármacos , Bloqueadores dos Canais de Potássio/farmacologia , Canais de Potássio/metabolismo , Nó Sinoatrial/efeitos dos fármacos , Animais , Bradicardia/metabolismo , Canais de Cálcio Tipo L/metabolismo , Modelos Animais de Doenças , Frequência Cardíaca/efeitos dos fármacos , Camundongos , Canal de Sódio Disparado por Voltagem NAV1.5/metabolismo , Nó Sinoatrial/fisiopatologia
16.
J Cell Biol ; 166(4): 537-48, 2004 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-15302852

RESUMO

In many cell types agonist-receptor activation leads to a rapid and transient release of Ca(2+) from intracellular stores via activation of inositol 1,4,5 trisphosphate (InsP(3)) receptors (InsP(3)Rs). Stimulated cells activate store- or receptor-operated calcium channels localized in the plasma membrane, allowing entry of extracellular calcium into the cytoplasm, and thus replenishment of intracellular calcium stores. Calcium entry must be finely regulated in order to prevent an excessive intracellular calcium increase. Junctate, an integral calcium binding protein of endo(sarco)plasmic reticulum membrane, (a) induces and/or stabilizes peripheral couplings between the ER and the plasma membrane, and (b) forms a supramolecular complex with the InsP(3)R and the canonical transient receptor potential protein (TRPC) 3 calcium entry channel. The full-length protein modulates both agonist-induced and store depletion-induced calcium entry, whereas its NH(2) terminus affects receptor-activated calcium entry. RNA interference to deplete cells of endogenous junctate, knocked down both agonist-activated calcium release from intracellular stores and calcium entry via TRPC3. These results demonstrate that junctate is a new protein involved in calcium homeostasis in eukaryotic cells.


Assuntos
Canais de Cálcio/metabolismo , Proteínas de Ligação ao Cálcio/fisiologia , Cálcio/metabolismo , Proteínas de Membrana/fisiologia , Oxigenases de Função Mista/fisiologia , Proteínas Musculares/fisiologia , Receptores Citoplasmáticos e Nucleares/metabolismo , Animais , Células COS , Cátions , Linhagem Celular , Membrana Celular/metabolismo , Citoplasma/metabolismo , Eletroforese em Gel de Poliacrilamida , Eletrofisiologia , Retículo Endoplasmático/metabolismo , Citometria de Fluxo , Proteínas de Fluorescência Verde , Humanos , Immunoblotting , Receptores de Inositol 1,4,5-Trifosfato , Proteínas Luminescentes/metabolismo , Microscopia Eletrônica , Peptídeos/química , Testes de Precipitina , Estrutura Terciária de Proteína , Interferência de RNA , RNA de Cadeia Dupla/química , Retículo Sarcoplasmático/metabolismo , Frações Subcelulares , Fatores de Tempo , Transfecção , Fosfolipases Tipo C/metabolismo
17.
Biochem J ; 411(2): 343-9, 2008 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-18035970

RESUMO

SRP-27 (sarcoplasmic reticulum protein of 27 kDa) is a newly identified integral membrane protein constituent of the skeletal muscle SR (sarcoplasmic reticulum). We identified its primary structure from cDNA clones isolated from a mouse skeletal muscle cDNA library. ESTs (expressed sequence tags) of SRP-27 were found mainly in cDNA libraries from excitable tissues of mouse. Western blot analysis confirmed the expression of SRP-27 in skeletal muscle and, to a lower extent, in heart and brain. Mild trypsin proteolysis combined with primary-structure prediction analysis suggested that SRP-27 has four transmembrane-spanning alpha helices and its C-terminal domain faces the cytoplasmic side of the endo(sarco)plasmic reticulum. The expression of SRP-27 is higher in fast twitch skeletal muscles compared to slow twitch muscles and peaks during the first month of post-natal development. High-resolution immunohistochemistry and Western blot analysis of subcellular fractions indicated that SRP-27 is distributed in both longitudinal tubules and terminal cisternae of the SR, as well as in the perinuclear membrane systems and the nuclear envelope of myotubes and adult fibres. SRP-27 co-sediments with the RyR (ryanodine receptor) macromolecular complex in high-salt sucrose-gradient centrifugation, and is pulled-down by anti-RyR as well as by maurocalcin, a well characterized RyR modulator. Our results indicate that SRP-27 is part of a SR supramolecular complex, suggesting the involvement of SRP-27 in the structural organization or function of the molecular machinery underlying excitation-contraction coupling.


Assuntos
Proteínas de Membrana/metabolismo , Contração Muscular , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Transdução de Sinais , Sequência de Aminoácidos , Animais , Linhagem Celular , Chlorocebus aethiops , Clonagem Molecular , Sequência Conservada , DNA Complementar/genética , Retículo Endoplasmático/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Proteínas de Membrana/química , Proteínas de Membrana/genética , Camundongos , Dados de Sequência Molecular , Proteínas Musculares/química , Proteínas Musculares/genética , Ratos , Ratos Wistar , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Alinhamento de Sequência
18.
Biophys J ; 95(7): 3497-509, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18621823

RESUMO

The 33 amino acid scorpion toxin maurocalcine (MCa) has been shown to modify the gating of the skeletal-type ryanodine receptor (RyR1). Here we explored the effects of MCa and its mutants ([Ala(8)]MCa, [Ala(19)]MCa, [Ala(20)]MCa, [Ala(22)]MCa, [Ala(23)]MCa, and [Ala(24)]MCa) on RyR1 incorporated into artificial lipid bilayers and on elementary calcium release events (ECRE) in rat and frog skeletal muscle fibers. The peptides induced long-lasting subconductance states (LLSS) on RyR1 that lasted for several seconds. However, their average length and frequency were decreased if the mutation was placed farther away in the 3D structure from the critical (24)Arg residue. The effect was strongly dependent on the direction of the current through the channel. If the direction was similar to that followed by calcium during release, the peptides were 8- to 10-fold less effective. In fibers long-lasting calcium release events were observed after the addition of the peptides. The average length of these events correlated well with the duration of LLSS. These data suggest that the effect of the peptide is governed by the large charged surface formed by residues Lys(20), Lys(22), Arg(23), Arg(24), and Lys(8). Our observations also indicate that the results from bilayer experiments mimic the in situ effects of MCa on RyR1.


Assuntos
Músculo Esquelético/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Venenos de Escorpião/química , Venenos de Escorpião/metabolismo , Animais , Cálcio/metabolismo , Canais de Cálcio/metabolismo , ATPases Transportadoras de Cálcio/metabolismo , Citosol/efeitos dos fármacos , Citosol/metabolismo , Relação Dose-Resposta a Droga , Ativação do Canal Iônico/efeitos dos fármacos , Fibras Musculares Esqueléticas/efeitos dos fármacos , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/efeitos dos fármacos , Mutação , Permeabilidade/efeitos dos fármacos , Ligação Proteica , Rana esculenta/anatomia & histologia , Rana esculenta/metabolismo , Ratos , Venenos de Escorpião/genética , Venenos de Escorpião/toxicidade , Propriedades de Superfície
19.
Biochim Biophys Acta ; 1768(10): 2528-40, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17888395

RESUMO

Maurocalcine (MCa) is a 33-amino acid residue peptide that was initially identified in the Tunisian scorpion Scorpio maurus palmatus. This peptide triggers interest for three main reasons. First, it helps unravelling the mechanistic basis of Ca(2+) mobilization from the sarcoplasmic reticulum because of its sequence homology with a calcium channel domain involved in excitation-contraction coupling. Second, it shows potent pharmacological properties because of its ability to activate the ryanodine receptor. Finally, it is of technological value because of its ability to carry cell-impermeable compounds across the plasma membrane. Herein, we characterized the molecular determinants that underlie the pharmacological and cell-penetrating properties of maurocalcine. We identify several key amino acid residues of the peptide that will help the design of cell-penetrating analogues devoid of pharmacological activity and cell toxicity. Close examination of the determinants underlying cell penetration of maurocalcine reveals that basic amino acid residues are required for an interaction with negatively charged lipids of the plasma membrane. Maurocalcine analogues that penetrate better have also stronger interaction with negatively charged lipids. Conversely, less effective analogues present a diminished ability to interact with these lipids. These findings will also help the design of still more potent cell penetrating analogues of maurocalcine.


Assuntos
Sobrevivência Celular/efeitos dos fármacos , Lipídeos de Membrana/química , Venenos de Escorpião/farmacologia , Sequência de Aminoácidos , Animais , Células CHO , Cricetinae , Cricetulus , Dados de Sequência Molecular , Rianodina/metabolismo , Venenos de Escorpião/química , Relação Estrutura-Atividade
20.
Biochem J ; 406(2): 309-15, 2007 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-17537000

RESUMO

We have previously shown that MCa (maurocalcine), a toxin from the venom of the scorpion Maurus palmatus, binds to RyR1 (type 1 ryanodine receptor) and induces strong modifications of its gating behaviour. In the present study, we investigated the ability of MCa to bind to and modify the gating process of cardiac RyR2. By performing pull-down experiments we show that MCa interacts directly with RyR2 with an apparent affinity of 150 nM. By expressing different domains of RyR2 in vitro, we show that MCa binds to two domains of RyR2, which are homologous with those previously identified on RyR1. The effect of MCa binding to RyR2 was then evaluated by three different approaches: (i) [(3)H]ryanodine binding experiments, showing a very weak effect of MCa (up to 1 muM), (ii) Ca(2+) release measurements from cardiac sarcoplasmic reticulum vesicles, showing that MCa up to 1 muM is unable to induce Ca(2+) release, and (iii) single-channel recordings, showing that MCa has no effect on the open probability or on the RyR2 channel conductance level. Long-lasting opening events of RyR2 were observed in the presence of MCa only when the ionic current direction was opposite to the physiological direction, i.e. from the cytoplasmic face of RyR2 to its luminal face. Therefore, despite the conserved MCa binding ability of RyR1 and RyR2, functional studies show that, in contrast with what is observed with RyR1, MCa does not affect the gating properties of RyR2. These results highlight a different role of the MCa-binding domains in the gating process of RyR1 and RyR2.


Assuntos
Coração/efeitos dos fármacos , Miocárdio/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Venenos de Escorpião/farmacologia , Animais , Ativação do Canal Iônico/efeitos dos fármacos , Ligação Proteica , Coelhos , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Canal de Liberação de Cálcio do Receptor de Rianodina/isolamento & purificação , Retículo Sarcoplasmático/efeitos dos fármacos , Retículo Sarcoplasmático/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA