Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Proc Natl Acad Sci U S A ; 107(1): 338-43, 2010 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-19966298

RESUMO

Very fast oscillations (VFOs, >80 Hz) are important for physiological brain processes and, in excess, with certain epilepsies. Putative mechanisms for VFO include interneuron spiking and network activity in coupled pyramidal cell axons. It is not known whether either, or both, of these apply in pathophysiological conditions. Spontaneously occurring interictal discharges occur in human tissue in vitro, resected from neocortical epileptic foci. VFO associated with these discharges was manifest in both field potential and, with phase delay, in excitatory synaptic inputs to fast spiking interneurons. Recruitment of somatic pyramidal cell and interneuron spiking was low, with no correlation between VFO power and synaptic inputs to principal cells. Reducing synaptic inhibition failed to affect VFO occurrence, but they were abolished by reduced gap junction conductance. These data suggest a lack of a causal role for interneurons, and favor a nonsynaptic pyramidal cell network origin for VFO in epileptic human neocortex.


Assuntos
Potenciais de Ação/fisiologia , Epilepsia/fisiopatologia , Neocórtex/fisiopatologia , Adolescente , Adulto , Criança , Eletroencefalografia , Eletrofisiologia , Antagonistas GABAérgicos/farmacologia , Humanos , Interneurônios/citologia , Interneurônios/fisiologia , Pessoa de Meia-Idade , Neocórtex/citologia , Neocórtex/efeitos dos fármacos , Neocórtex/fisiologia , Piridazinas/farmacologia , Transmissão Sináptica/fisiologia , Lobo Temporal/citologia , Lobo Temporal/efeitos dos fármacos , Lobo Temporal/fisiologia , Lobo Temporal/fisiopatologia , Adulto Jovem
2.
J Neurosci ; 31(47): 17040-51, 2011 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-22114273

RESUMO

Rhythmic activity in populations of cortical neurons accompanies, and may underlie, many aspects of primary sensory processing and short-term memory. Activity in the gamma band (30 Hz up to >100 Hz) is associated with such cognitive tasks and is thought to provide a substrate for temporal coupling of spatially separate regions of the brain. However, such coupling requires close matching of frequencies in co-active areas, and because the nominal gamma band is so spectrally broad, it may not constitute a single underlying process. Here we show that, for inhibition-based gamma rhythms in vitro in rat neocortical slices, mechanistically distinct local circuit generators exist in different laminae of rat primary auditory cortex. A persistent, 30-45 Hz, gap-junction-dependent gamma rhythm dominates rhythmic activity in supragranular layers 2/3, whereas a tonic depolarization-dependent, 50-80 Hz, pyramidal/interneuron gamma rhythm is expressed in granular layer 4 with strong glutamatergic excitation. As a consequence, altering the degree of excitation of the auditory cortex causes bifurcation in the gamma frequency spectrum and can effectively switch temporal control of layer 5 from supragranular to granular layers. Computational modeling predicts the pattern of interlaminar connections may help to stabilize this bifurcation. The data suggest that different strategies are used by primary auditory cortex to represent weak and strong inputs, with principal cell firing rate becoming increasingly important as excitation strength increases.


Assuntos
Córtex Auditivo/fisiologia , Ondas Encefálicas/fisiologia , Sincronização de Fases em Eletroencefalografia/fisiologia , Potenciais Pós-Sinápticos Excitadores/fisiologia , Animais , Eletroencefalografia/métodos , Masculino , Ratos , Ratos Wistar
3.
Proc Natl Acad Sci U S A ; 105(47): 18572-7, 2008 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-18997013

RESUMO

Local circuits in the medial entorhinal cortex (mEC) and hippocampus generate gamma frequency population rhythms independently. Temporal interaction between these areas at gamma frequencies is implicated in memory-a phenomenon linked to activity of NMDA-subtype glutamate receptors. While blockade of NMDA receptors does not affect frequency of gamma rhythms in hippocampus, it exposes a second, lower frequency (25-35 Hz) gamma rhythm in mEC. In experiment and model, NMDA receptor-dependent mEC gamma rhythms were mediated by basket interneurons, but NMDA receptor-independent gamma rhythms were mediated by a novel interneuron subtype-the goblet cell. This cell was distinct from basket cells in morphology, intrinsic membrane properties and synaptic inputs. The two different gamma frequencies matched the different intrinsic frequencies in hippocampal areas CA3 and CA1, suggesting that NMDA receptor activation may control the nature of temporal interactions between mEC and hippocampus, thus influencing the pathway for information transfer between the two regions.


Assuntos
Córtex Entorrinal/fisiologia , Receptores de N-Metil-D-Aspartato/fisiologia , Animais , Córtex Entorrinal/efeitos dos fármacos , Ketamina/farmacologia , Memória , Ratos , Ratos Wistar
4.
PLoS Comput Biol ; 4(9): e1000169, 2008 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-18773075

RESUMO

Rhythmic voltage oscillations resulting from the summed activity of neuronal populations occur in many nervous systems. Contemporary observations suggest that coexistent oscillations interact and, in time, may switch in dominance. We recently reported an example of these interactions recorded from in vitro preparations of rat somatosensory cortex. We found that following an initial interval of coexistent gamma ( approximately 25 ms period) and beta2 ( approximately 40 ms period) rhythms in the superficial and deep cortical layers, respectively, a transition to a synchronous beta1 ( approximately 65 ms period) rhythm in all cortical layers occurred. We proposed that the switch to beta1 activity resulted from the novel mechanism of period concatenation of the faster rhythms: gamma period (25 ms)+beta2 period (40 ms) = beta1 period (65 ms). In this article, we investigate in greater detail the fundamental mechanisms of the beta1 rhythm. To do so we describe additional in vitro experiments that constrain a biologically realistic, yet simplified, computational model of the activity. We use the model to suggest that the dynamic building blocks (or motifs) of the gamma and beta2 rhythms combine to produce a beta1 oscillation that exhibits cross-frequency interactions. Through the combined approach of in vitro experiments and mathematical modeling we isolate the specific components that promote or destroy each rhythm. We propose that mechanisms vital to establishing the beta1 oscillation include strengthened connections between a population of deep layer intrinsically bursting cells and a transition from antidromic to orthodromic spike generation in these cells. We conclude that neural activity in the superficial and deep cortical layers may temporally combine to generate a slower oscillation.


Assuntos
Modelos Neurológicos , Periodicidade , Córtex Somatossensorial/fisiologia , Animais , Biologia Computacional , Eletrofisiologia , Agonistas de Aminoácidos Excitatórios/administração & dosagem , Técnicas In Vitro , Ácido Caínico/administração & dosagem , Masculino , Modelos Estatísticos , Ratos , Ratos Wistar , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Córtex Somatossensorial/anatomia & histologia , Córtex Somatossensorial/efeitos dos fármacos , Fatores de Tempo
5.
Schizophr Bull ; 34(5): 962-73, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18544550

RESUMO

Cognitive disruption in schizophrenia is associated with altered patterns of spatiotemporal interaction associated with multiple electroencephalogram (EEG) frequency bands in cortex. In particular, changes in the generation of gamma (30-80 Hz) and beta2 (20-29 Hz) rhythms correlate with observed deficits in communication between different cortical areas. Aspects of these changes can be reproduced in animal models, most notably those involving acute or chronic reduction in glutamatergic synaptic communication mediated by N-methyl D-aspartate (NMDA) receptors. In vitro electrophysiological and immunocytochemical approaches afforded by such animal models continue to reveal a great deal about the mechanisms underlying EEG rhythm generation and are beginning to uncover which basic molecular, cellular, and network phenomena may underlie their disruption in schizophrenia. Here we briefly review the evidence for changes in gamma-aminobutyric acidergic (GABAergic) and glutamatergic function and address the problem of region specificity of changes with quantitative comparisons of effects of ketamine on gamma and beta2 rhythms in vitro. We conclude, from available evidence, that many observed changes in markers for GABAergic function in schizophrenia may be secondary to deficits in NMDA receptor-mediated excitatory synaptic activity. Furthermore, the broad range of changes in cortical dynamics seen in schizophrenia -- with contrasting effects seen in different brain regions and for different frequency bands -- may be more directly attributable to underlying deficits in glutamatergic neuronal communication rather than GABAergic inhibition alone.


Assuntos
Eletroencefalografia , Receptores de N-Metil-D-Aspartato/fisiologia , Esquizofrenia/diagnóstico , Esquizofrenia/fisiopatologia , Humanos , Receptores de GABA-A/fisiologia , Transdução de Sinais
6.
Curr Opin Pharmacol ; 11(5): 508-14, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21555247

RESUMO

Few common neurological illnesses trace back to single molecular disturbances. Many disparate putative causes may co-associate with a single disease state. However, uncovering functional, hierarchical networks of underlying mechanisms can provide a framework in which many primary pathologies converge on more complex, single higher level correlates of disease. This article focuses on cognitive deficits associated with schizophrenia to illustrate: a) How non-invasive EEG biomarkers of cognitive function constitute such a 'higher level correlate' of underlying pathologies. b) How derangement of multiple, cell-specific, molecular processes can converge on such EEG-visible, correlates of disrupted cognitive function. This approach suggests that evidence-based design of multi-target therapies may take advantage of hierarchical patterns of convergence to improve both efficacy and selectivity of disease-intervention.


Assuntos
Ondas Encefálicas , Transtornos Cognitivos/fisiopatologia , Esquizofrenia/fisiopatologia , Animais , Antipsicóticos/uso terapêutico , Encéfalo/efeitos dos fármacos , Encéfalo/fisiopatologia , Ondas Encefálicas/efeitos dos fármacos , Ondas Encefálicas/fisiologia , Transtornos Cognitivos/tratamento farmacológico , Eletroencefalografia , Humanos , Interneurônios/efeitos dos fármacos , Interneurônios/fisiologia , Esquizofrenia/tratamento farmacológico
7.
Artigo em Inglês | MEDLINE | ID: mdl-20407636

RESUMO

Acetylcholine is the primary neuromodulator involved in cortical arousal in mammals. Cholinergic modulation is involved in conscious awareness, memory formation and attention - processes that involve intercommunication between different cortical regions. Such communication is achieved in part through temporal structuring of neuronal activity by population rhythms, particularly in the beta and gamma frequency ranges (12-80 Hz). Here we demonstrate, using in vitro and in silico models, that spectrally identical patterns of beta2 and gamma rhythms are generated in primary sensory areas and polymodal association areas by fundamentally different local circuit mechanisms: Glutamatergic excitation induced beta2 frequency population rhythms only in layer 5 association cortex whereas cholinergic neuromodulation induced this rhythm only in layer 5 primary sensory cortex. This region-specific sensitivity of local circuits to cholinergic modulation allowed for control of the extent of cortical temporal interactions. Furthermore, the contrasting mechanisms underlying these beta2 rhythms produced a high degree of directionality, favouring an influence of association cortex over primary auditory cortex.

8.
Front Neurosci ; 2(2): 145-54, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19225587

RESUMO

Multiple local neuronal circuits support different, discrete frequencies of network rhythm in neocortex. Relationships between different frequencies correspond to mechanisms designed to minimise interference, couple activity via stable phase interactions, and control the amplitude of one frequency relative to the phase of another. These mechanisms are proposed to form a framework for spectral information processing. Individual local circuits can also transform their frequency through changes in intrinsic neuronal properties and interactions with other oscillating microcircuits. Here we discuss a frequency transformation in which activity in two co-active local circuits may combine sequentially to generate a third frequency whose period is the concatenation sum of the original two. With such an interaction, the intrinsic periodicity in each component local circuit is preserved - alternate, single periods of each original rhythm form one period of a new frequency - suggesting a robust mechanism for combining information processed on multiple concurrent spatiotemporal scales.

9.
Front Cell Neurosci ; 2: 1, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18946516

RESUMO

The neocortex generates rhythmic electrical activity over a frequency range covering many decades. Specific cognitive and motor states are associated with oscillations in discrete frequency bands within this range, but it is not known whether interactions and transitions between distinct frequencies are of functional importance. When coexpressed rhythms have frequencies that differ by a factor of two or more interactions can be seen in terms of phase synchronization. Larger frequency differences can result in interactions in the form of nesting of faster frequencies within slower ones by a process of amplitude modulation. It is not known how coexpressed rhythms, whose frequencies differ by less than a factor of two may interact. Here we show that two frequencies (gamma - 40 Hz and beta2 - 25 Hz), coexpressed in superficial and deep cortical laminae with low temporal interaction, can combine to generate a third frequency (beta1 - 15 Hz) showing strong temporal interaction. The process occurs via period concatenation, with basic rhythm-generating microcircuits underlying gamma and beta2 rhythms forming the building blocks of the beta1 rhythm by a process of addition. The mean ratio of adjacent frequency components was a constant - approximately the golden mean - which served to both minimize temporal interactions, and permit multiple transitions, between frequencies. The resulting temporal landscape may provide a framework for multiplexing - parallel information processing on multiple temporal scales.

10.
Proc Natl Acad Sci U S A ; 103(42): 15646-50, 2006 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-17030821

RESUMO

Beta2 frequency (20-30 Hz) oscillations appear over somatosensory and motor cortices in vivo during motor preparation and can be coherent with muscle electrical activity. We describe a beta2 frequency oscillation occurring in vitro in networks of layer V pyramidal cells, the cells of origin of the corticospinal tract. This beta2 oscillation depends on gap junctional coupling, but it survives a cut through layer 4 and, hence, does not depend on apical dendritic electrogenesis. It also survives a blockade of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors or a blockade of GABA(A) receptors that is sufficient to suppress gamma (30-70 Hz) oscillations in superficial cortical layers. The oscillation period is determined by the M type of K+ current.


Assuntos
Ritmo beta , Rede Nervosa/fisiologia , Neurônios/metabolismo , Córtex Somatossensorial/fisiologia , Potenciais de Ação/fisiologia , Animais , Agonistas de Aminoácidos Excitatórios/metabolismo , Junções Comunicantes/metabolismo , Ácido Caínico/metabolismo , Masculino , Neurônios/citologia , Ratos , Ratos Wistar , Receptores de GABA-A/metabolismo , Córtex Somatossensorial/anatomia & histologia , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA