Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
J Theor Biol ; 504: 110333, 2020 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-32615126

RESUMO

In living organisms, the same enzyme catalyses the degradation of thousands of different mRNAs, but the possible influence of competing substrates has been largely ignored so far. We develop a simple mechanistic model of the coupled degradation of all cell mRNAs using the total quasi-steady-state approximation of the Michaelis-Menten framework. Numerical simulations of the model using carefully chosen parameters and analyses of rate sensitivity coefficients show how substrate competition alters mRNA decay. The model predictions reproduce and explain a number of experimental observations on mRNA decay following transcription arrest, such as delays before the onset of degradation, the occurrence of variable degradation profiles with increased non linearities and the negative correlation between mRNA half-life and concentration. The competition acts at different levels, through the initial concentration of cell mRNAs and by modifying the enzyme affinity for its targets. The consequence is a global slow down of mRNA decay due to enzyme titration and the amplification of its apparent affinity. Competition happens to stabilize weakly affine mRNAs and to destabilize the most affine ones. We believe that this mechanistic model is an interesting alternative to the exponential models commonly used for the determination of mRNA half-lives. It allows analysing regulatory mechanisms of mRNA degradation and its predictions are directly comparable to experimental data.


Assuntos
Estabilidade de RNA , Meia-Vida , RNA Mensageiro/genética
2.
J Bacteriol ; 201(13)2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-30988035

RESUMO

During aerobic growth on glucose, Escherichia coli excretes acetate, a mechanism called "overflow metabolism." At high concentrations, the secreted acetate inhibits growth. Several mechanisms have been proposed for explaining this phenomenon, but a thorough analysis is hampered by the diversity of experimental conditions and strains used in these studies. Here, we describe the construction of a set of isogenic strains that remove different parts of the metabolic network involved in acetate metabolism. Analysis of these strains reveals that (i) high concentrations of acetate in the medium inhibit growth without significantly perturbing central metabolism; (ii) growth inhibition persists even when acetate assimilation is completely blocked; and (iii) regulatory interactions mediated by acetyl-phosphate play a small but significant role in growth inhibition by acetate. The major contribution to growth inhibition by acetate may originate in systemic effects like the uncoupling effect of organic acids or the perturbation of the anion composition of the cell, as previously proposed. Our data suggest, however, that under the conditions considered here, the uncoupling effect plays only a limited role.IMPORTANCE High concentrations of organic acids such as acetate inhibit growth of Escherichia coli and other bacteria. This phenomenon is of interest for understanding bacterial physiology but is also of practical relevance. Growth inhibition by organic acids underlies food preservation and causes problems during high-density fermentation in biotechnology. What causes this phenomenon? Classical explanations invoke the uncoupling effect of acetate and the establishment of an anion imbalance. Here, we propose and investigate an alternative hypothesis: the perturbation of acetate metabolism due to the inflow of excess acetate. We find that this perturbation accounts for 20% of the growth-inhibitory effect through a modification of the acetyl phosphate concentration. Moreover, we argue that our observations are not expected based on uncoupling alone.


Assuntos
Acetatos/metabolismo , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/genética , Redes e Vias Metabólicas , Transporte Biológico , Fermentação , Regulação Bacteriana da Expressão Gênica , Glucose/metabolismo , Mutação
3.
Bioinformatics ; 33(14): i301-i310, 2017 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-28881984

RESUMO

MOTIVATION: Technological advances in metabolomics have made it possible to monitor the concentration of extracellular metabolites over time. From these data, it is possible to compute the rates of uptake and excretion of the metabolites by a growing cell population, providing precious information on the functioning of intracellular metabolism. The computation of the rate of these exchange reactions, however, is difficult to achieve in practice for a number of reasons, notably noisy measurements, correlations between the concentration profiles of the different extracellular metabolites, and discontinuties in the profiles due to sudden changes in metabolic regime. RESULTS: We present a method for precisely estimating time-varying uptake and excretion rates from time-series measurements of extracellular metabolite concentrations, specifically addressing all of the above issues. The estimation problem is formulated in a regularized Bayesian framework and solved by a combination of extended Kalman filtering and smoothing. The method is shown to improve upon methods based on spline smoothing of the data. Moreover, when applied to two actual datasets, the method recovers known features of overflow metabolism in Escherichia coli and Lactococcus lactis , and provides evidence for acetate uptake by L. lactis after glucose exhaustion. The results raise interesting perspectives for further work on rate estimation from measurements of intracellular metabolites. AVAILABILITY AND IMPLEMENTATION: The Matlab code for the estimation method is available for download at https://team.inria.fr/ibis/rate-estimation-software/ , together with the datasets. CONTACT: eugenio.cinquemani@inria.fr. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Metabolômica/métodos , Software , Teorema de Bayes , Escherichia coli/metabolismo , Lactococcus lactis/metabolismo , Modelos Biológicos
4.
Bull Math Biol ; 80(2): 294-318, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29214429

RESUMO

The aim of this paper is to analyze the dynamical behavior of biological models of gene transcription and translation. We focus on a particular positive feedback loop governing the synthesis of RNA polymerase, needed for transcribing its own gene. We write a high-dimension model based on mass action laws and reduce it to a two-variable model (RNA polymerase and its mRNA) by means of monotone system theory and timescale arguments. We show that the reduced model has either a single globally stable trivial equilibrium in (0, 0), or an unstable zero equilibrium and a globally stable positive one. We give generalizations of this model, notably with a variable growth rate. The dynamical behavior of this system can be related to biological observations on the bacterium Escherichia coli.


Assuntos
RNA Polimerases Dirigidas por DNA/genética , RNA Polimerases Dirigidas por DNA/metabolismo , Modelos Biológicos , Simulação por Computador , Escherichia coli/genética , Escherichia coli/metabolismo , Conceitos Matemáticos , Biossíntese de Proteínas , Teoria de Sistemas , Transcrição Gênica
5.
Mol Microbiol ; 100(4): 686-700, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26833659

RESUMO

Metabolic control in Escherichia coli is a complex process involving multilevel regulatory systems but the involvement of post-transcriptional regulation is uncertain. The post-transcriptional factor CsrA is stated as being the only regulator essential for the use of glycolytic substrates. A dozen enzymes in the central carbon metabolism (CCM) have been reported as potentially controlled by CsrA, but its impact on the CCM functioning has not been demonstrated. Here, a multiscale analysis was performed in a wild-type strain and its isogenic mutant attenuated for CsrA (including growth parameters, gene expression levels, metabolite pools, abundance of enzymes and fluxes). Data integration and regulation analysis showed a coordinated control of the expression of glycolytic enzymes. This also revealed the imbalance of metabolite pools in the csrA mutant upper glycolysis, before the phosphofructokinase PfkA step. This imbalance is associated with a glucose-phosphate stress. Restoring PfkA activity in the csrA mutant strain suppressed this stress and increased the mutant growth rate on glucose. Thus, the carbon storage regulator system is essential for the effective functioning of the upper glycolysis mainly through its control of PfkA. This work demonstrates the pivotal role of post-transcriptional regulation to shape the carbon metabolism.


Assuntos
Carbono/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , Glicólise , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Escherichia coli/enzimologia , Glicogênio/metabolismo , Glicólise/genética , Mutação , Fosfofrutoquinases/metabolismo , Estresse Fisiológico
6.
Bioinformatics ; 31(12): i71-9, 2015 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-26072511

RESUMO

MOTIVATION: Time-series observations from reporter gene experiments are commonly used for inferring and analyzing dynamical models of regulatory networks. The robust estimation of promoter activities and protein concentrations from primary data is a difficult problem due to measurement noise and the indirect relation between the measurements and quantities of biological interest. RESULTS: We propose a general approach based on regularized linear inversion to solve a range of estimation problems in the analysis of reporter gene data, notably the inference of growth rate, promoter activity, and protein concentration profiles. We evaluate the validity of the approach using in silico simulation studies, and observe that the methods are more robust and less biased than indirect approaches usually encountered in the experimental literature based on smoothing and subsequent processing of the primary data. We apply the methods to the analysis of fluorescent reporter gene data acquired in kinetic experiments with Escherichia coli. The methods are capable of reliably reconstructing time-course profiles of growth rate, promoter activity and protein concentration from weak and noisy signals at low population volumes. Moreover, they capture critical features of those profiles, notably rapid changes in gene expression during growth transitions. AVAILABILITY AND IMPLEMENTATION: The methods described in this article are made available as a Python package (LGPL license) and also accessible through a web interface. For more information, see https://team.inria.fr/ibis/wellinverter.


Assuntos
Algoritmos , Proteínas de Escherichia coli/genética , Escherichia coli/genética , Perfilação da Expressão Gênica/métodos , Regulação Bacteriana da Expressão Gênica , Genes Bacterianos/genética , Genes Reporter/genética , Biologia Computacional/métodos , Cinética , Análise de Regressão
7.
Mol Syst Biol ; 11(11): 840, 2015 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-26596932

RESUMO

The ability to control growth is essential for fundamental studies of bacterial physiology and biotechnological applications. We have engineered an Escherichia coli strain in which the transcription of a key component of the gene expression machinery, RNA polymerase, is under the control of an inducible promoter. By changing the inducer concentration in the medium, we can adjust the RNA polymerase concentration and thereby switch bacterial growth between zero and the maximal growth rate supported by the medium. We show that our synthetic growth switch functions in a medium-independent and reversible way, and we provide evidence that the switching phenotype arises from the ultrasensitive response of the growth rate to the concentration of RNA polymerase. We present an application of the growth switch in which both the wild-type E. coli strain and our modified strain are endowed with the capacity to produce glycerol when growing on glucose. Cells in which growth has been switched off continue to be metabolically active and harness the energy gain to produce glycerol at a twofold higher yield than in cells with natural control of RNA polymerase expression. Remarkably, without any further optimization, the improved yield is close to the theoretical maximum computed from a flux balance model of E. coli metabolism. The proposed synthetic growth switch is a promising tool for gaining a better understanding of bacterial physiology and for applications in synthetic biology and biotechnology.


Assuntos
RNA Polimerases Dirigidas por DNA/genética , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica/genética , Biologia Sintética/métodos , RNA Polimerases Dirigidas por DNA/metabolismo , Escherichia coli/fisiologia , Biologia de Sistemas
8.
Mol Cell Proteomics ; 13(4): 954-68, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24482123

RESUMO

Metabolic engineering aims to design high performance microbial strains producing compounds of interest. This requires systems-level understanding; genome-scale models have therefore been developed to predict metabolic fluxes. However, multi-omics data including genomics, transcriptomics, fluxomics, and proteomics may be required to model the metabolism of potential cell factories. Recent technological advances to quantitative proteomics have made mass spectrometry-based quantitative assays an interesting alternative to more traditional immuno-affinity based approaches. This has improved specificity and multiplexing capabilities. In this study, we developed a quantification workflow to analyze enzymes involved in central metabolism in Escherichia coli (E. coli). This workflow combined full-length isotopically labeled standards with selected reaction monitoring analysis. First, full-length (15)N labeled standards were produced and calibrated to ensure accurate measurements. Liquid chromatography conditions were then optimized for reproducibility and multiplexing capabilities over a single 30-min liquid chromatography-MS analysis. This workflow was used to accurately quantify 22 enzymes involved in E. coli central metabolism in a wild-type reference strain and two derived strains, optimized for higher NADPH production. In combination with measurements of metabolic fluxes, proteomics data can be used to assess different levels of regulation, in particular enzyme abundance and catalytic rate. This provides information that can be used to design specific strains used in biotechnology. In addition, accurate measurement of absolute enzyme concentrations is key to the development of predictive kinetic models in the context of metabolic engineering.


Assuntos
Carbono/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimologia , Espectrometria de Massas/métodos , NADP/metabolismo , Calibragem , Cromatografia Líquida/métodos , Marcação por Isótopo , Cinética , Engenharia Metabólica , Proteômica/métodos , Padrões de Referência , Reprodutibilidade dos Testes , Fluxo de Trabalho
9.
Nucleic Acids Res ; 41(17): e164, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23892289

RESUMO

We have developed a new screening methodology for identifying all genes that control the expression of a target gene through genetic or metabolic interactions. The screen combines mutant libraries with luciferase reporter constructs, whose expression can be monitored in vivo and over time in different environmental conditions. We apply the method to identify the genes that control the expression of the gene acs, encoding the acetyl coenzyme A synthetase, in Escherichia coli. We confirm most of the known genetic regulators, including CRP-cAMP, IHF and components of the phosphotransferase system. In addition, we identify new regulatory interactions, many of which involve metabolic intermediates or metabolic sensing, such as the genes pgi, pfkA, sucB and lpdA, encoding enzymes in glycolysis and the TCA cycle. Some of these novel interactions were validated by quantitative reverse transcriptase-polymerase chain reaction. More generally, we observe that a large number of mutants directly or indirectly influence acs expression, an effect confirmed for a second promoter, sdhC. The method is applicable to any promoter fused to a luminescent reporter gene in combination with a deletion mutant library.


Assuntos
Regulação Bacteriana da Expressão Gênica , Redes Reguladoras de Genes , Acetato-CoA Ligase/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Genes Reporter , Genômica/métodos , Regiões Promotoras Genéticas
10.
Mol Syst Biol ; 9: 634, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23340840

RESUMO

Gene expression is controlled by the joint effect of (i) the global physiological state of the cell, in particular the activity of the gene expression machinery, and (ii) DNA-binding transcription factors and other specific regulators. We present a model-based approach to distinguish between these two effects using time-resolved measurements of promoter activities. We demonstrate the strength of the approach by analyzing a circuit involved in the regulation of carbon metabolism in E. coli. Our results show that the transcriptional response of the network is controlled by the physiological state of the cell and the signaling metabolite cyclic AMP (cAMP). The absence of a strong regulatory effect of transcription factors suggests that they are not the main coordinators of gene expression changes during growth transitions, but rather that they complement the effect of global physiological control mechanisms. This change of perspective has important consequences for the interpretation of transcriptome data and the design of biological networks in biotechnology and synthetic biology.


Assuntos
Escherichia coli/fisiologia , Regulação Bacteriana da Expressão Gênica , Modelos Biológicos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Carbono/metabolismo , AMP Cíclico/genética , AMP Cíclico/metabolismo , Proteína Receptora de AMP Cíclico/genética , Proteína Receptora de AMP Cíclico/metabolismo , Escherichia coli/crescimento & desenvolvimento , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Fator Proteico para Inversão de Estimulação/genética , Fator Proteico para Inversão de Estimulação/metabolismo , Redes Reguladoras de Genes , Reprodutibilidade dos Testes
11.
Elife ; 122023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37255080

RESUMO

Different strains of a microorganism growing in the same environment display a wide variety of growth rates and growth yields. We developed a coarse-grained model to test the hypothesis that different resource allocation strategies, corresponding to different compositions of the proteome, can account for the observed rate-yield variability. The model predictions were verified by means of a database of hundreds of published rate-yield and uptake-secretion phenotypes of Escherichia coli strains grown in standard laboratory conditions. We found a very good quantitative agreement between the range of predicted and observed growth rates, growth yields, and glucose uptake and acetate secretion rates. These results support the hypothesis that resource allocation is a major explanatory factor of the observed variability of growth rates and growth yields across different bacterial strains. An interesting prediction of our model, supported by the experimental data, is that high growth rates are not necessarily accompanied by low growth yields. The resource allocation strategies enabling high-rate, high-yield growth of E. coli lead to a higher saturation of enzymes and ribosomes, and thus to a more efficient utilization of proteomic resources. Our model thus contributes to a fundamental understanding of the quantitative relationship between rate and yield in E. coli and other microorganisms. It may also be useful for the rapid screening of strains in metabolic engineering and synthetic biology.


Assuntos
Escherichia coli , Proteômica , Escherichia coli/metabolismo , Engenharia Metabólica/métodos , Ribossomos , Alocação de Recursos
12.
J Theor Biol ; 295: 100-15, 2012 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-22138386

RESUMO

Gene regulatory networks consist of direct interactions, but also include indirect interactions mediated by metabolism. We investigate to which extent these indirect interactions arising from metabolic coupling influence the dynamics of the system. To this end, we build a qualitative model of the gene regulatory network controlling carbon assimilation in Escherichia coli, and use this model to study the changes in gene expression following a diauxic shift from glucose to acetate. In particular, we compare the relative variation in the steady-state concentrations of enzymes and transcription regulators during growth on glucose and acetate, as well as the dynamic response of gene expression to the exhaustion of glucose and the subsequent assimilation of acetate. We find significant differences between the dynamics of the system in the absence and presence of metabolic coupling. This shows that interactions arising from metabolic coupling cannot be ignored when studying the dynamics of gene regulatory networks.


Assuntos
Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica/fisiologia , Modelos Genéticos , Carbono/metabolismo , Escherichia coli/metabolismo , Redes Reguladoras de Genes/fisiologia , Gluconeogênese/genética , Glucose/metabolismo , Glicólise/genética , Redes e Vias Metabólicas/genética
13.
Biotechnol Adv ; 54: 107805, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34302931

RESUMO

Metabolic engineering strategies are crucial for the development of bacterial cell factories with improved performance. Until now, optimal metabolic networks have been designed based on systems biology approaches integrating large-scale data on the steady-state concentrations of mRNA, protein and metabolites, sometimes with dynamic data on fluxes, but rarely with any information on mRNA degradation. In this review, we compile growing evidence that mRNA degradation is a key regulatory level in E. coli that metabolic engineering strategies should take into account. We first discuss how mRNA degradation interacts with transcription and translation, two other gene expression processes, to balance transcription regulation and remove poorly translated mRNAs. The many reciprocal interactions between mRNA degradation and metabolism are also highlighted: metabolic activity can be controlled by changes in mRNA degradation and in return, the activity of the mRNA degradation machinery is controlled by metabolic factors. The mathematical models of the crosstalk between mRNA degradation dynamics and other cellular processes are presented and discussed with a view towards novel mRNA degradation-based metabolic engineering strategies. We show finally that mRNA degradation-based strategies have already successfully been applied to improve heterologous protein synthesis. Overall, this review underlines how important mRNA degradation is in regulating E. coli metabolism and identifies mRNA degradation as a key target for innovative metabolic engineering strategies in biotechnology.


Assuntos
Escherichia coli , Engenharia Metabólica , Escherichia coli/genética , Redes e Vias Metabólicas , Estabilidade de RNA , Biologia de Sistemas
14.
Bioinformatics ; 26(9): 1262-3, 2010 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-20097915

RESUMO

MOTIVATION: Fluorescent and luminescent reporter gene systems in combination with automated microplate readers allow real-time monitoring of gene expression on the population level at high precision and sampling density. This generates large amounts of data for the analysis of which computer tools are missing to date. RESULTS: We have developed WellReader, a MATLAB program for the analysis of fluorescent and luminescent reporter gene data. WellReader allows the user to load the output files of microplate readers, remove outliers, correct for background effects and smooth and fit the data. Moreover, it computes biologically relevant quantities from the measured signals, notably promoter activities and protein concentrations, and compares the resulting expression profiles of different genes under different conditions. AVAILABILITY: WellReader is available under a LGPL licence at http://prabi1.inrialpes.fr/trac/wellreader.


Assuntos
Biologia Computacional/métodos , Algoritmos , Gráficos por Computador , Corantes Fluorescentes/farmacologia , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica , Genes Reporter , Luminescência , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Linguagens de Programação , Software
15.
PLoS Comput Biol ; 6(6): e1000812, 2010 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-20548959

RESUMO

Gene regulatory networks consist of direct interactions but also include indirect interactions mediated by metabolites and signaling molecules. We describe how these indirect interactions can be derived from a model of the underlying biochemical reaction network, using weak time-scale assumptions in combination with sensitivity criteria from metabolic control analysis. We apply this approach to a model of the carbon assimilation network in Escherichia coli. Our results show that the derived gene regulatory network is densely connected, contrary to what is usually assumed. Moreover, the network is largely sign-determined, meaning that the signs of the indirect interactions are fixed by the flux directions of biochemical reactions, independently of specific parameter values and rate laws. An inversion of the fluxes following a change in growth conditions may affect the signs of the indirect interactions though. This leads to a feedback structure that is at the same time robust to changes in the kinetic properties of enzymes and that has the flexibility to accommodate radical changes in the environment.


Assuntos
Carbono/metabolismo , Escherichia coli/metabolismo , Gluconeogênese , Glicólise , Modelos Biológicos , Algoritmos , Regulação Alostérica , Redes Reguladoras de Genes , Transdução de Sinais
16.
ACS Synth Biol ; 10(11): 2910-2926, 2021 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-34739215

RESUMO

We investigated the scalability of a previously developed growth switch based on external control of RNA polymerase expression. Our results indicate that, in liter-scale bioreactors operating in fed-batch mode, growth-arrested Escherichia coli cells are able to convert glucose to glycerol at an increased yield. A multiomics quantification of the physiology of the cells shows that, apart from acetate production, few metabolic side effects occur. However, a number of specific responses to growth slow-down and growth arrest are launched at the transcriptional level. These notably include the downregulation of genes involved in growth-associated processes, such as amino acid and nucleotide metabolism and translation. Interestingly, the transcriptional responses are buffered at the proteome level, probably due to the strong decrease of the total mRNA concentration after the diminution of transcriptional activity and the absence of growth dilution of proteins. Growth arrest thus reduces the opportunities for dynamically adjusting the proteome composition, which poses constraints on the design of biotechnological production processes but may also avoid the initiation of deleterious stress responses.


Assuntos
Escherichia coli/genética , Escherichia coli/fisiologia , Acetatos/metabolismo , Reatores Biológicos/microbiologia , RNA Polimerases Dirigidas por DNA/genética , RNA Polimerases Dirigidas por DNA/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica/genética , Glucose/genética , Glucose/metabolismo , Glicerol/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Biologia Sintética/métodos
17.
mSphere ; 5(3)2020 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-32434841

RESUMO

Bacteria have to continuously adjust to nutrient fluctuations from favorable to less-favorable conditions and in response to carbon starvation. The glucose-acetate transition followed by carbon starvation is representative of such carbon fluctuations observed in Escherichia coli in many environments. Regulation of gene expression through fine-tuning of mRNA pools constitutes one of the regulation levels required for such a metabolic adaptation. It results from both mRNA transcription and degradation controls. However, the contribution of transcript stability regulation in gene expression is poorly characterized. Using combined transcriptome and mRNA decay analyses, we investigated (i) how transcript stability changes in E. coli during the glucose-acetate-starvation transition and (ii) if these changes contribute to gene expression changes. Our work highlights that transcript stability increases with carbon depletion. Most of the stabilization occurs at the glucose-acetate transition when glucose is exhausted, and then stabilized mRNAs remain stable during acetate consumption and carbon starvation. Meanwhile, expression of most genes is downregulated and we observed three times less gene expression upregulation. Using control analysis theory on 375 genes, we show that most of gene expression regulation is driven by changes in transcription. Although mRNA stabilization is not the controlling phenomenon, it contributes to the emphasis or attenuation of transcriptional regulation. Moreover, upregulation of 18 genes (33% of our studied upregulated set) is governed mainly by transcript stabilization. Because these genes are associated with responses to nutrient changes and stress, this underscores a potentially important role of posttranscriptional regulation in bacterial responses to nutrient starvation.IMPORTANCE The ability to rapidly respond to changing nutrients is crucial for E. coli to survive in many environments, including the gut. Reorganization of gene expression is the first step used by bacteria to adjust their metabolism accordingly. It involves fine-tuning of both transcription (transcriptional regulation) and mRNA stability (posttranscriptional regulation). While the forms of transcriptional regulation have been extensively studied, the role of mRNA stability during a metabolic switch is poorly understood. Investigating E. coli genomewide transcriptome and mRNA stability during metabolic transitions representative of the carbon source fluctuations in many environments, we have documented the role of mRNA stability in the response to nutrient changes. mRNAs are globally stabilized during carbon depletion. For a few genes, this leads directly to expression upregulation. As these genes are regulators of stress responses and metabolism, our work sheds new light on the likely importance of posttranscriptional regulations in response to environmental stress.


Assuntos
Proteínas de Escherichia coli/genética , Escherichia coli/genética , Genoma Bacteriano , Estabilidade de RNA , Estresse Fisiológico , Adaptação Fisiológica , Proteínas de Bactérias/genética , Carbono/metabolismo , Regulação para Baixo , Escherichia coli/metabolismo , Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica , Glucose/metabolismo , RNA Mensageiro , Transcrição Gênica , Regulação para Cima
18.
Bioinformatics ; 24(16): i227-33, 2008 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-18689830

RESUMO

MOTIVATION: Models of the dynamics of cellular interaction networks have become increasingly larger in recent years. Formal verification based on model checking provides a powerful technology to keep up with this increase in scale and complexity. The application of modelchecking approaches is hampered, however, by the difficulty for nonexpert users to formulate appropriate questions in temporal logic. RESULTS: In order to deal with this problem, we propose the use of patterns, that is, high-level query templates that capture recurring biological questions and can be automatically translated into temporal logic. The applicability of the developed set of patterns has been investigated by the analysis of an extended model of the network of global regulators controlling the carbon starvation response in Escherichia coli. AVAILABILITY: GNA and the model of the carbon starvation response network are available at http://www-helix.inrialpes.fr/gna.


Assuntos
Algoritmos , Modelos Biológicos , Mapeamento de Interação de Proteínas/métodos , Proteoma/metabolismo , Transdução de Sinais/fisiologia , Validação de Programas de Computador , Software , Simulação por Computador , Modelos Logísticos
19.
BMC Syst Biol ; 12(1): 82, 2018 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-30241537

RESUMO

BACKGROUND: Carbon catabolite repression (CCR) controls the order in which different carbon sources are metabolised. Although this system is one of the paradigms of regulation in bacteria, the underlying mechanisms remain controversial. CCR involves the coordination of different subsystems of the cell - responsible for the uptake of carbon sources, their breakdown for the production of energy and precursors, and the conversion of the latter to biomass. The complexity of this integrated system, with regulatory mechanisms cutting across metabolism, gene expression, and signalling, has motivated important modelling efforts over the past four decades, especially in the enterobacterium Escherichia coli. RESULTS: Starting from a simple core model with only four intracellular metabolites, we develop an ensemble of model variants, all showing diauxic growth behaviour during a batch process. The model variants fall into one of the four categories: flux balance models, kinetic models with growth dilution, kinetic models with regulation, and resource allocation models. The model variants differ from one another in only a single aspect, each breaking the symmetry between the two substrate assimilation pathways in a different manner, and can be quantitatively compared using a so-called diauxic growth index. For each of the model variants, we predict the behaviour in two new experimental conditions, namely a glucose pulse for a culture growing in minimal medium with lactose and a batch culture with different initial concentrations of the components of the transport systems. When qualitatively comparing these predictions with experimental data for these two conditions, a number of models can be excluded while other model variants are still not discriminable. The best-performing model variants are based on inducer inclusion and activation of enzymatic genes by a global transcription factor, but the other proposed factors may complement these well-known regulatory mechanisms. CONCLUSIONS: The model ensemble presented here offers a better understanding of the variety of mechanisms that have been proposed to play a role in CCR. In addition, it provides an educational resource for systems biology, as it gives an introduction to a broad range of modeling approaches in the context of a simple but biologically relevant example.


Assuntos
Modelos Biológicos , Bactérias/citologia , Bactérias/crescimento & desenvolvimento , Bactérias/metabolismo , Carbono/metabolismo , Proliferação de Células , Espaço Intracelular/metabolismo , Cinética , Análise do Fluxo Metabólico
20.
BMC Syst Biol ; 12(1): 68, 2018 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-29898718

RESUMO

BACKGROUND: Understanding the dynamical behaviour of biological systems is challenged by their large number of components and interactions. While efforts have been made in this direction to reduce model complexity, they often prove insufficient to grasp which and when model processes play a crucial role. Answering these questions is fundamental to unravel the functioning of living organisms. RESULTS: We design a method for dealing with model complexity, based on the analysis of dynamical models by means of Principal Process Analysis. We apply the method to a well-known model of circadian rhythms in mammals. The knowledge of the system trajectories allows us to decompose the system dynamics into processes that are active or inactive with respect to a certain threshold value. Process activities are graphically represented by Boolean and Dynamical Process Maps. We detect model processes that are always inactive, or inactive on some time interval. Eliminating these processes reduces the complex dynamics of the original model to the much simpler dynamics of the core processes, in a succession of sub-models that are easier to analyse. We quantify by means of global relative errors the extent to which the simplified models reproduce the main features of the original system dynamics and apply global sensitivity analysis to test the influence of model parameters on the errors. CONCLUSION: The results obtained prove the robustness of the method. The analysis of the sub-model dynamics allows us to identify the source of circadian oscillations. We find that the negative feedback loop involving proteins PER, CRY, CLOCK-BMAL1 is the main oscillator, in agreement with previous modelling and experimental studies. In conclusion, Principal Process Analysis is a simple-to-use method, which constitutes an additional and useful tool for analysing the complex dynamical behaviour of biological systems.


Assuntos
Modelos Biológicos , Animais , Ritmo Circadiano , Retroalimentação Fisiológica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA