Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Biochem Cell Biol ; 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38810276

RESUMO

Lactoferrin (Lf), a multifunctional cationic glycoprotein extracted from milk or colostrum, is able to chelate two ferric ions per molecule, inhibit the formation of reactive oxygen species, interact with the anionic components of bacteria or host cells, and enter inside host cell nucleus, thereby exerting antibacterial, anti-invasive, and anti-inflammatory activities. By virtue of Lf presence, bovine colostrum is expected to perform analogous functions to pure Lf, along with additional activities attributable to other bioactive constituents. The present research aims to compare the antibacterial, anti-invasive, and anti-inflammatory activities of bovine Lf purified from milk (mbLf) and colostrum (cbLf) in comparison to those exhibited by whole bovine colostrum (wbc). The results demonstrated a major efficacy of mbLf in inhibiting pathogenic bacteria and in exerting anti-invasive and anti-survival activities with respect to cbLf and wbc. Furthermore, mbLf lowered IL-6 levels to those of uninfected cells, while a less evident decrease was observed upon cbLf treatment. Conversely, wbc managed to slightly lower IL-6 levels compared to those synthesized by infected cells. These data demonstrate that, to obtain maximum effectiveness in such activities, Lf should be formulated/used without addition of other substances and should be sourced from bovine milk rather than colostrum.

2.
Ophthalmology ; 131(6): 674-681, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38160881

RESUMO

PURPOSE: To compare the outcomes of deep anterior lamellar keratoplasty (DALK) using dehydrated versus standard organ culture-stored donor corneas for eyes with keratoconus. DESIGN: Prospective, randomized, single-center trial conducted in Italy. PARTICIPANTS: Adult patients (age ≥ 18 years) with keratoconus scheduled for elective DALK. METHODS: Patients undergoing successful type 1 bubble pneumatic dissection using a standard DALK technique were randomized during surgery to receive either dehydrated (n = 30) or standard organ culture-stored (n = 30) donor corneas. MAIN OUTCOME MEASURES: The primary study outcome was best spectacle-corrected visual acuity (BSCVA) 12 months after surgery. Secondary outcomes were refractive astigmatism (RA), endothelial cell density (ECD), and complication rates. RESULTS: Postoperative BSCVA did not significantly differ between groups at both time points: mean difference at 6 months was 0.030 logarithm of the minimum angle of resolution (logMAR; 95% confidence interval [CI], -0.53 to 0.10 logMAR; P = 0.471) and at 12 months was -0.013 logMAR (95% CI, -0.10 to 0.08 logMAR; P = 0.764). No significant differences between groups were observed in terms of postoperative RA and ECD at all time points. In the first 3 days after DALK, an epithelial defect was present in 10 patients (33%) in the organ culture cornea group and in 29 patients (97%) in the dehydrated cornea group. Complete re-epithelialization was achieved by day 7 in all patients (100%) in both groups. CONCLUSIONS: The study provides evidence that the use of dehydrated corneas is noninferior to the use of standard organ culture donor corneas for DALK. Corneal tissue dehydration represents a viable solution that can allow long-term cornea preservation and avoid wastage of unused corneas. FINANCIAL DISCLOSURE(S): The author(s) have no proprietary or commercial interest in any materials discussed in this article.


Assuntos
Transplante de Córnea , Ceratocone , Técnicas de Cultura de Órgãos , Preservação de Órgãos , Doadores de Tecidos , Acuidade Visual , Humanos , Estudos Prospectivos , Masculino , Feminino , Adulto , Transplante de Córnea/métodos , Acuidade Visual/fisiologia , Ceratocone/cirurgia , Ceratocone/fisiopatologia , Preservação de Órgãos/métodos , Pessoa de Meia-Idade , Endotélio Corneano/patologia , Adulto Jovem , Córnea/cirurgia , Contagem de Células
3.
Biometals ; 36(3): 417-436, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-35920949

RESUMO

Beyond the absolute and indisputable relevance and efficacy of anti-SARS-CoV-2 vaccines, the rapid transmission, the severity of infection, the absence of the protection on immunocompromised patients, the propagation of variants, the onset of infection and/or disease in vaccinated subjects and the lack of availability of worldwide vaccination require additional antiviral treatments. Since 1987, lactoferrin (Lf) is well-known to possess an antiviral activity related to its physico-chemical properties and to its ability to bind to both heparan sulfate proteoglycans (HSPGs) of host cells and/or surface components of viral particles. In the present review, we summarize in vitro and in vivo studies concerning the efficacy of Lf against DNA, RNA, enveloped and non-enveloped viruses. Recent studies have revealed that the in vitro antiviral activity of Lf is also extendable to SARS-CoV-2. In vivo, Lf oral administration in early stage of SARS-CoV-2 infection counteracts COVID-19 pathogenesis. In particular, the effect of Lf on SARS-CoV-2 entry, inflammatory homeostasis, iron dysregulation, iron-proteins synthesis, reactive oxygen formation, oxidative stress, gut-lung axis regulation as well as on RNA negativization, and coagulation/fibrinolysis balance will be critically reviewed. Moreover, the molecular mechanisms underneath, including the Lf binding to HSPGs and spike glycoprotein, will be disclosed and discussed. Taken together, present data not only support the application of the oral administration of Lf alone in asymptomatic COVID-19 patients or as adjuvant of standard of care practice in symptomatic ones but also constitute the basis for enriching the limited literature on Lf effectiveness for COVID-19 treatment.


Assuntos
COVID-19 , Humanos , Antivirais/farmacologia , Antivirais/uso terapêutico , Antivirais/metabolismo , Lactoferrina/química , SARS-CoV-2 , Tratamento Farmacológico da COVID-19 , Ferro/metabolismo
4.
Biometals ; 36(3): 391-416, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36214975

RESUMO

Iron is by far the most widespread and essential transition metal, possessing crucial biological functions for living systems. Despite chemical advantages, iron biology has forced organisms to face with some issues: ferric iron insolubility and ferrous-driven formation of toxic radicals. For these reasons, acquisition and transport of iron constitutes a formidable challenge for cells and organisms, which need to maintain adequate iron concentrations within a narrow range, allowing biological processes without triggering toxic effects. Higher organisms have evolved extracellular carrier proteins to acquire, transport and manage iron. In recent years, a renewed interest in iron biology has highlighted the role of iron-proteins dysregulation in the onset and/or exacerbation of different pathological conditions. However, to date, no resolutive therapy for iron disorders has been found. In this review, we outline the efficacy of Lactoferrin, a member of the transferrin family mainly secreted by exocrine glands and neutrophils, as a new emerging orchestrator of iron metabolism and homeostasis, able to counteract iron disorders associated to different pathologies, including iron deficiency and anemia of inflammation in blood, Parkinson and Alzheimer diseases in the brain and cystic fibrosis in the lung.


Assuntos
Anemia , Distúrbios do Metabolismo do Ferro , Humanos , Lactoferrina/química , Ferro/metabolismo , Transferrina/metabolismo , Homeostase
5.
Biometals ; 36(3): 491-507, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-35768747

RESUMO

Uropathogenic Escherichia coli (UPEC) strains are the primary cause of urinary tract infections (UTIs). UPEC strains are able to invade, multiply and persisting in host cells. Therefore, UPEC strains are associated to recurrent UTIs requiring long-term antibiotic therapy. However, this therapy is suboptimal due to the increase of multidrug-resistant UPEC. The use of non-antibiotic treatments for managing UTIs is required. Among these, bovine lactoferrin (bLf), a multifunctional cationic glycoprotein, could be a promising tool because inhibits the entry into the host cells of several intracellular bacteria. Here, we demonstrate that 100 µg/ml bLf hinders the invasion of 2.0 ± 0.5 × 104 CFU/ml E. coli CFT073, prototype of UPEC, infecting 2.0 ± 0.5 × 105 cells/ml urinary bladder T24 epithelial cells. The highest protection (100%) is due to the bLf binding with host surface components even if an additional binding to bacterial surface components cannot be excluded. Of note, in the absence of bLf, UPEC survives and multiplies, while bLf significantly decreases bacterial intracellular survival. After these encouraging results, an observational survey on thirty-three patients affected by recurrent cystitis was performed. The treatment consisted in the oral administration of bLf alone or in combination with antibiotics and/or probiotics. After the observation period, a marked reduction of cystitis episodes was observed (p < 0.001) in all patients compared to the episodes occurred during the 6 months preceding the bLf-treatment. Twenty-nine patients did not report cystitis episodes (87.9%) whereas the remaining four (12.1%) experienced only one episode, indicating that bLf could be a worthwhile and safe treatment in counteracting recurrent cystitis.


Assuntos
Cistite , Infecções por Escherichia coli , Lactoferrina , Infecções Urinárias , Escherichia coli Uropatogênica , Humanos , Cistite/tratamento farmacológico , Cistite/microbiologia , Infecções por Escherichia coli/tratamento farmacológico , Infecções por Escherichia coli/microbiologia , Lactoferrina/farmacologia , Lactoferrina/uso terapêutico , Infecções Urinárias/tratamento farmacológico , Infecções Urinárias/microbiologia
6.
Int J Mol Sci ; 24(21)2023 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-37958908

RESUMO

Many pathological conditions, including obesity, diabetes, hypertension, heart disease, and cancer, are associated with abnormal metabolic states. The progressive loss of metabolic control is commonly characterized by insulin resistance, atherogenic dyslipidemia, inflammation, central obesity, and hypertension, a cluster of metabolic dysregulations usually referred to as the "metabolic syndrome". Recently, nutraceuticals have gained attention for the generalized perception that natural substances may be synonymous with health and balance, thus becoming favorable candidates for the adjuvant treatment of metabolic dysregulations. Among nutraceutical proteins, lactoferrin (Lf), an iron-binding glycoprotein of the innate immune system, has been widely recognized for its multifaceted activities and high tolerance. As this review shows, Lf can exert a dual role in human metabolism, either boosting or resetting it under physiological and pathological conditions, respectively. Lf consumption is safe and is associated with several benefits for human health, including the promotion of oral and gastrointestinal homeostasis, control of glucose and lipid metabolism, reduction of systemic inflammation, and regulation of iron absorption and balance. Overall, Lf can be recommended as a promising natural, completely non-toxic adjuvant for application as a long-term prophylaxis in the therapy for metabolic disorders, such as insulin resistance/type II diabetes and the metabolic syndrome.


Assuntos
Diabetes Mellitus Tipo 2 , Hipertensão , Resistência à Insulina , Síndrome Metabólica , Humanos , Lactoferrina/metabolismo , Diabetes Mellitus Tipo 2/tratamento farmacológico , Síndrome Metabólica/tratamento farmacológico , Obesidade/tratamento farmacológico , Inflamação/tratamento farmacológico , Adjuvantes Imunológicos , Metabolismo Energético , Ferro/metabolismo , Hipertensão/tratamento farmacológico
7.
Int J Mol Sci ; 24(4)2023 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-36835105

RESUMO

Nasal sprays are medical devices useful for preventing infection and the subsequent spread of airborne pathogens. The effectiveness of these devices depends on the activity of chosen compounds which can create a physical barrier against viral uptake as well as incorporate different substances with antiviral activity. Among antiviral compounds, UA, a dibenzofuran derived from lichens, has the mechanical ability to modify its structure by creating a branch capable of forming a protective barrier. The mechanical ability of UA to protect cells from virus infection was investigated by analyzing the branching capacity of UA, and then the protection mechanism in an in vitro model was also studied. As expected, UA at 37 °C was able to create a barrier confirming its ramification property. At the same time, UA was able to block the infection of Vero E6 and HNEpC cells by interfering with a biological interaction between cells and viruses as revealed also by the UA quantification. Therefore, UA can block virus activity through a mechanical barrier effect without altering the physiological nasal homeostasis. The findings of this research could be of great relevance in view of the growing alarm regarding the spread of airborne viral diseases.


Assuntos
Antivirais , Antivirais/farmacologia , Sobrevivência Celular
8.
Int J Mol Sci ; 24(9)2023 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-37175651

RESUMO

The Trans-Activator of Transcription (Tat) of Human Immunodeficiency Virus (HIV-1) is involved in virus replication and infection and can promote oxidative stress in human astroglial cells. In response, host cells activate transcription of antioxidant genes, including a subunit of System Xc- cystine/glutamate antiporter which, in turn, can trigger glutamate-mediated excitotoxicity. Here, we present data on the efficacy of bovine Lactoferrin (bLf), both in its native (Nat-bLf) and iron-saturated (Holo-bLf) forms, in counteracting oxidative stress in U373 human astroglial cells constitutively expressing the viral protein (U373-Tat). Our results show that, dependent on iron saturation, both Nat-bLf and Holo-bLf can boost host antioxidant response by up-regulating System Xc- and the cell iron exporter Ferroportin via the Nuclear factor erythroid 2-related factor (Nrf2) pathway, thus reducing Reactive Oxygen Species (ROS)-mediated lipid peroxidation and DNA damage in astrocytes. In U373-Tat cells, both forms of bLf restore the physiological internalization of Transferrin (Tf) Receptor 1, the molecular gate for Tf-bound iron uptake. The involvement of astrocytic antioxidant response in Tat-mediated neurotoxicity was evaluated in co-cultures of U373-Tat with human neuronal SH-SY5Y cells. The results show that the Holo-bLf exacerbates Tat-induced excitotoxicity on SH-SY5Y, which is directly dependent on System-Xc- upregulation, thus highlighting the mechanistic role of iron in the biological activities of the glycoprotein.


Assuntos
HIV-1 , Neuroblastoma , Humanos , Lactoferrina/farmacologia , Lactoferrina/metabolismo , Antioxidantes/farmacologia , Antioxidantes/metabolismo , HIV-1/metabolismo , Estresse Oxidativo , Ferro/metabolismo , Glutamatos/metabolismo
9.
Biochem Cell Biol ; 99(1): 81-90, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32213143

RESUMO

The oral cavity is a non-uniform, extraordinary environment characterized by mucosal, epithelial, abiotic surfaces and secretions as saliva. Aerobic and anaerobic commensal and pathogenic microorganisms colonize the tongue, teeth, jowl, gingiva, and periodontium. Commensals exert an important role in host defenses, while pathogenic microorganisms can nullify this protective function causing oral and systemic diseases. Every day, 750-1000 mL of saliva, containing several host defense constituents including lactoferrin (Lf), are secreted and swallowed. Lf is a multifunctional iron-chelating cationic glycoprotein of innate immunity. Depending on, or regardless of its iron-binding ability, Lf exerts bacteriostatic, bactericidal, antibiofilm, antioxidant, antiadhesive, anti-invasive, and anti-inflammatory activities. Here, we report the protective role of Lf in different oral pathologies, such as xerostomia, halitosis, alveolar or maxillary bone damage, gingivitis, periodontitis, and black stain. Unlike antibiotic therapy, which is ineffective against bacteria that are within a biofilm, adherent, or intracellular, the topical administration of Lf, through its simultaneous activity against microbial replication, biofilms, adhesion, and invasiveness, as well as inflammation, has been proven to be efficient in the treatment of all known oral pathologies without any adverse effects.


Assuntos
Antibacterianos/farmacologia , Lactoferrina/metabolismo , Boca/efeitos dos fármacos , Administração Tópica , Animais , Antibacterianos/administração & dosagem , Antibacterianos/metabolismo , Bactérias/efeitos dos fármacos , Biofilmes/efeitos dos fármacos , Humanos , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Inflamação/patologia , Lactoferrina/administração & dosagem , Boca/microbiologia , Boca/patologia
10.
Anal Chem ; 92(7): 4814-4819, 2020 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-32162903

RESUMO

X-ray microscopy is increasingly used in biology, but in most cases only in a qualitative way. We present here a 3D correlative cryo X-ray microscopy approach suited for the quantification of molar concentrations and structure in native samples at nanometer scale. The multimodal approach combines X-ray fluorescence and X-ray holographic nanotomography on "thick" frozen-hydrated cells. The quantitativeness of the X-ray fluorescence reconstruction is improved by estimating the self-attenuation from the 3D holography reconstruction. Applied to complex macrophage cells, we extract the quantification of major and minor elements heavier than phosphorus, as well as the density, in the different organelles. The intracellular landscape shows remarkable elemental differences. This novel analytical microscopy approach will be of particular interest to investigate complex biological and chemical systems in their native environment.


Assuntos
Macrófagos/química , Nanopartículas/análise , Imagem Óptica , Análise de Célula Única , Microscopia Crioeletrônica , Humanos , Macrófagos/citologia , Tamanho da Partícula , Propriedades de Superfície
11.
Biometals ; 33(2-3): 159-168, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32274616

RESUMO

Milk derivative bovine Lactoferrin (bLf), a multifunctional glycoprotein available in large quantities and recognized as safe, possesses high homology and identical functions with human Lactoferrin. There are numerous food supplements containing bLf which, however, can vary in its purity, integrity and, consequently, functionality. Here, we report on a clinical trial where bLf (100 mg two times/day) was orally administered before (Arm A) or during meals (Arm B) to pregnant women with hereditary thrombophilia and suffering from anemia of inflammation. A significant increase of the number of red blood cells (RBCs), hemoglobin (Hb), total serum iron (TSI) and serum ferritin (sFtn) levels, along with a significant decrease of interleukin-6 were detected after 30 days in Arm A, but not in Arm B, thus letting us to hypothesize that bLf inefficacy could be related to its degradation by digestive proteases. To verify this hypothesis, bLf was incubated in gastric juice collected before or after meals. An undigested or a digested profile was observed when bLf was incubated in gastric juice sampled before or after meals, respectively. These results can explain the beneficial effect observed when bLf is administered under fasting conditions, i.e. in the absence of active proteases.


Assuntos
Anemia Ferropriva/tratamento farmacológico , Anti-Infecciosos/uso terapêutico , Inflamação/tratamento farmacológico , Ferro/metabolismo , Lactoferrina/administração & dosagem , Lactoferrina/uso terapêutico , Trombofilia/tratamento farmacológico , Administração Oral , Anemia Ferropriva/sangue , Animais , Anti-Infecciosos/administração & dosagem , Anti-Infecciosos/análise , Bovinos , Feminino , Suco Gástrico/química , Suco Gástrico/metabolismo , Humanos , Inflamação/sangue , Ferro/sangue , Lactoferrina/análise , Gravidez , Trombofilia/sangue
12.
Aesthetic Plast Surg ; 44(1): 131-138, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31768580

RESUMO

The aim of this study is to analyze the psychological outcomes for patients undergoing non-surgical correction of nasal defects using injections of cross-linked hyaluronic acid. We assessed changes in the subjective perception of nasal appearance after non-surgical rhinoplasty using the Rhinoplasty Outcomes Evaluation (ROE) questionnaire, which is validated and widely used in the literature. One hundred adult subjects without prior history of surgical or non-surgical rhinoplasty underwent non-surgical recontouring using the hyaluronic acid filler from December 2016 to December 2018. The points of inoculation have been standardized by the authors and are divided according to the aesthetic subunits of the nose. A final 74 patients (65 females and 9 males) completed a one-year follow-up and were included in the present study. The ROE questionnaire consists of six questions and assesses the way patients perceive the appearance of their nose and the way they think the people around them view the appearance of their nose. The results of each question were analyzed for each patient, comparing the preoperative results over a 12-month time-frame. Candidates for rhinoplasty, either medical or surgical, are among the most difficult to treat and, interestingly, there is substantial literature showing that among these patients, there is a higher rate of psychiatric disorders. Many of these patients seek aesthetic surgery and are often dissatisfied with the outcome of their surgery. The authors suggest that the use of ROE is not only a valid method of assessing patient satisfaction, but it could also be used as a tool to highlight some of the psychological characteristics of patients long before performing any treatment and could help identify potentially problematic patients.Level of Evidence IV This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266.


Assuntos
Rinoplastia , Adulto , Estética , Feminino , Humanos , Masculino , Nariz/cirurgia , Satisfação do Paciente , Resultado do Tratamento
13.
Int J Mol Sci ; 21(14)2020 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-32664543

RESUMO

Recently, the world has been dealing with a devastating global pandemic coronavirus infection, with more than 12 million infected worldwide and over 300,000 deaths as of May 15th 2020, related to a novel coronavirus (2019-nCoV), characterized by a spherical morphology and identified through next-generation sequencing. Although the respiratory tract is the primary portal of entry of SARS-CoV-2, gastrointestinal involvement associated with nausea, vomiting and diarrhoea may also occur. No drug or vaccine has been approved due to the absence of evidence deriving from rigorous clinical trials. Increasing interest has been highlighted on the possible preventative role and adjunct treatment of lactoferrin, glycoprotein of human secretions part of a non-specific defensive system, known to play a crucial role against microbial and viral infections and exerting anti-inflammatory effects on different mucosal surfaces and able to regulate iron metabolism. In this review, analysing lactoferrin properties, we propose designing a clinical trial to evaluate and verify its effect using a dual combination treatment with local, solubilized intranasal spray formulation and oral administration. Lactoferrin could counteract the coronavirus infection and inflammation, acting either as natural barrier of both respiratory and intestinal mucosa or reverting the iron disorders related to the viral colonization.


Assuntos
Infecções por Coronavirus/prevenção & controle , Lactoferrina/uso terapêutico , Pandemias/prevenção & controle , Pneumonia Viral/prevenção & controle , Enzima de Conversão de Angiotensina 2 , Betacoronavirus/isolamento & purificação , Betacoronavirus/fisiologia , COVID-19 , Infecções por Coronavirus/patologia , Infecções por Coronavirus/virologia , Humanos , Inflamação , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/virologia , Ferro/metabolismo , Lactoferrina/farmacologia , Peptidil Dipeptidase A/metabolismo , Pneumonia Viral/patologia , Pneumonia Viral/virologia , Mucosa Respiratória/efeitos dos fármacos , Mucosa Respiratória/virologia , SARS-CoV-2 , Internalização do Vírus/efeitos dos fármacos
14.
Molecules ; 25(8)2020 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-32344579

RESUMO

The liver is a frontline immune site specifically designed to check and detect potential pathogens from the bloodstream to maintain a general state of immune hyporesponsiveness. One of the main functions of the liver is the regulation of iron homeostasis. The liver detects changes in systemic iron requirements and can regulate its concentration. Pathological states lead to the dysregulation of iron homeostasis which, in turn, can promote infectious and inflammatory processes. In this context, hepatic viruses deviate hepatocytes' iron metabolism in order to better replicate. Indeed, some viruses are able to alter the expression of iron-related proteins or exploit host receptors to enter inside host cells. Lactoferrin (Lf), a multifunctional iron-binding glycoprotein belonging to the innate immunity, is endowed with potent antiviral activity, mainly related to its ability to block viral entry into host cells by interacting with viral and/or cell surface receptors. Moreover, Lf can act as an iron scavenger by both direct iron-chelation or the modulation of the main iron-related proteins. In this review, the complex interplay between viral hepatitis, iron homeostasis, and inflammation as well as the role of Lf are outlined.


Assuntos
Suscetibilidade a Doenças , Hepatite Viral Humana/etiologia , Hepatite Viral Humana/metabolismo , Ferro/metabolismo , Animais , Transporte Biológico , Resistência à Doença , Suscetibilidade a Doenças/imunologia , Homeostase , Interações Hospedeiro-Patógeno/imunologia , Humanos , Proteínas de Ligação ao Ferro/metabolismo , Lactoferrina/metabolismo , Fígado/imunologia , Fígado/metabolismo , Fígado/patologia , Fígado/virologia , Especificidade de Órgãos/imunologia , Ligação Proteica , Receptores de Superfície Celular/metabolismo
15.
Int J Mol Sci ; 20(22)2019 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-31726759

RESUMO

LF82, a prototype of adherent-invasive E. coli (AIEC), is able to adhere to, invade, survive and replicate into intestinal epithelial cells. LF82 is able to enhance either its adhesion and invasion by up-regulating carcinoembryonic antigen-related cell adhesion molecule 6 (CEACAM-6), the main cell surface molecule for bacterial adhesion, and its intracellular survival by inducing host DNA damage, thus blocking the cellular cycle. Lactoferrin (Lf) is a multifunctional cationic glycoprotein of natural immunity, exerting an anti-invasive activity against LF82 when added to Caco-2 cells at the moment of infection. Here, the infection of 12 h Lf pre-treated Caco-2 cells was carried out at a time of 0 or 3 or 10 h after Lf removal from culture medium. The effect of Lf pre-treatment on LF82 invasiveness, survival, cell DNA damage, CEACAM-6 expression, apoptosis induction, as well as on Lf subcellular localization, has been evaluated. Lf, even if removed from culture medium, reduced LF82 invasion and survival as well as bacteria-induced DNA damage in Caco-2 cells independently from induction of apoptosis, modulation of CEACAM-6 expression and Lf sub-cellular localization. At our knowledge, this is the first study showing that the sole Lf pre-treatment can activate protective intracellular pathways, reducing LF82 invasiveness, intracellular survival and cell-DNA damages.


Assuntos
Diferenciação Celular , Dano ao DNA , Enterócitos , Escherichia coli Enteropatogênica/crescimento & desenvolvimento , Infecções por Escherichia coli , Lactoferrina/farmacologia , Animais , Células CACO-2 , Bovinos , Enterócitos/metabolismo , Enterócitos/microbiologia , Enterócitos/patologia , Infecções por Escherichia coli/tratamento farmacológico , Infecções por Escherichia coli/metabolismo , Infecções por Escherichia coli/patologia , Humanos
16.
Int J Mol Sci ; 20(9)2019 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-31052156

RESUMO

Cystic fibrosis (CF) is a genetic disorder affecting several organs including airways. Bacterial infection, inflammation and iron dysbalance play a major role in the chronicity and severity of the lung pathology. The aim of this study was to investigate the effect of lactoferrin (Lf), a multifunctional iron-chelating glycoprotein of innate immunity, in a CF murine model of Pseudomonas aeruginosa chronic lung infection. To induce chronic lung infection, C57BL/6 mice, either cystic fibrosis transmembrane conductance regulator (CFTR)-deficient (Cftrtm1UNCTgN(FABPCFTR)#Jaw) or wild-type (WT), were intra-tracheally inoculated with multidrug-resistant MDR-RP73 P. aeruginosa embedded in agar beads. Treatments with aerosolized bovine Lf (bLf) or saline were started five minutes after infection and repeated daily for six days. Our results demonstrated that aerosolized bLf was effective in significantly reducing both pulmonary bacterial load and infiltrated leukocytes in infected CF mice. Furthermore, for the first time, we showed that bLf reduced pulmonary iron overload, in both WT and CF mice. In particular, at molecular level, a significant decrease of both the iron exporter ferroportin and iron storage ferritin, as well as luminal iron content was observed. Overall, bLf acts as a potent multi-targeting agent able to break the vicious cycle induced by P. aeruginosa, inflammation and iron dysbalance, thus mitigating the severity of CF-related pathology and sequelae.


Assuntos
Anti-Infecciosos/uso terapêutico , Fibrose Cística/terapia , Lactoferrina/uso terapêutico , Pneumonia/terapia , Administração por Inalação , Animais , Anti-Infecciosos/administração & dosagem , Proteínas de Transporte de Cátions/metabolismo , Bovinos , Fibrose Cística/complicações , Fibrose Cística/genética , Ferritinas/metabolismo , Lactoferrina/administração & dosagem , Camundongos , Camundongos Endogâmicos C57BL , Pneumonia/etiologia , Pneumonia/microbiologia , Pseudomonas aeruginosa/patogenicidade
17.
Molecules ; 24(7)2019 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-30987256

RESUMO

Lactoferrin (Lf), a cationic glycoprotein able to chelate two ferric irons per molecule, is synthesized by exocrine glands and neutrophils. Since the first anti-microbial function attributed to Lf, several activities have been discovered, including the relevant anti-inflammatory one, especially associated to the down-regulation of pro-inflammatory cytokines, as IL-6. As high levels of IL-6 are involved in iron homeostasis disorders, Lf is emerging as a potent regulator of iron and inflammatory homeostasis. Here, the role of Lf against aseptic and septic inflammation has been reviewed. In particular, in the context of aseptic inflammation, as anemia of inflammation, preterm delivery, Alzheimer's disease and type 2 diabetes, Lf administration reduces local and/or systemic inflammation. Moreover, Lf oral administration, by decreasing serum IL-6, reverts iron homeostasis disorders. Regarding septic inflammation occurring in Chlamydia trachomatis infection, cystic fibrosis and inflammatory bowel disease, Lf, besides the anti-inflammatory activity, exerts a significant activity against bacterial adhesion, invasion and colonization. Lastly, a critical analysis of literature in vitro data reporting contradictory results on the Lf role in inflammatory processes, ranging from pro- to anti-inflammatory activity, highlighted that they depend on cell models, cell metabolic status, stimulatory or infecting agents as well as on Lf iron saturation degree, integrity and purity.


Assuntos
Inflamação/etiologia , Inflamação/metabolismo , Lactoferrina/metabolismo , Sepse/etiologia , Sepse/metabolismo , Anemia/tratamento farmacológico , Anemia/etiologia , Anemia/metabolismo , Animais , Anti-Infecciosos/metabolismo , Anti-Infecciosos/farmacologia , Anti-Infecciosos/uso terapêutico , Anti-Inflamatórios/metabolismo , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Biomarcadores , Humanos , Inflamação/tratamento farmacológico , Ferro/metabolismo , Lactoferrina/farmacologia , Lactoferrina/uso terapêutico , Sepse/tratamento farmacológico
18.
Biometals ; 31(3): 445-455, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29435826

RESUMO

Osteonecrosis of the jaws is an emerging pathological condition characterized by un-exposure or exposure of the necrotic bone, independently from the etiology. This term is usually referred to medication-related osteonecrosis of the jaws due to severe adverse reaction to certain medicines, as bisphosphonates, used for the treatment of cancer and osteoporosis. The management of patients with Bisphosphonate-Related Osteonecrosis of the Jaws (BRONJ) remains challenging because surgical and medical interventions may not eradicate this pathology. The goal of treatment of patients at risk of developing BRONJ or of those who have active disease is the preservation of quality of life by controlling pain, managing infection, and preventing the development of new areas of necrosis. The treatment of osteonecrosis consists in the surgical removal of necrotic bone followed by antibiotic therapy and application of sterile greasy gauze until the wound closure. The classical medical treatment has been compared with the innovative one consisting in the application of sterile greasy gauze soaked with bovine lactoferrin (bLf) after surgery. Here, for the first time, bLf efficacy on wound repair in subjects suffering from BRONJ with the progressive destruction of bone in the mandible or maxilla has been demonstrated. The positive results consist in a significant shorter time of wound closure (1 or 2 weeks) compared to that observed with classical surgical treatment (2-3 months). These promising results are an interesting tool for the innovative treatment of this pathology and for increasing the quality of life of these patients.


Assuntos
Osteonecrose da Arcada Osseodentária Associada a Difosfonatos/tratamento farmacológico , Conservadores da Densidade Óssea/administração & dosagem , Lactoferrina/administração & dosagem , Necrose/tratamento farmacológico , Administração Oral , Idoso , Animais , Osteonecrose da Arcada Osseodentária Associada a Difosfonatos/fisiopatologia , Osteonecrose da Arcada Osseodentária Associada a Difosfonatos/cirurgia , Bovinos , Difosfonatos/efeitos adversos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Necrose/induzido quimicamente , Necrose/cirurgia , Qualidade de Vida
19.
Biometals ; 31(3): 301-312, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29516297

RESUMO

Human and bovine lactoferrin (hLf and bLf) are multifunctional iron-binding glycoprotein constitutively synthesized and secreted by glandular epithelial cells and by neutrophils following induction. HLf and bLf possess very high similarity of sequence. Therefore, most of the in vitro and in vivo studies are carried out with commercial bLf (cbLf), available in large quantities and recognized by Food and Drug Administration (FDA, USA) as a safe substance. Physico-chemical heterogeneity of different cbLf preparations influences their effectiveness. CbLf iron-saturation affects thermal stability and resistance to proteolysis. Moreover, other metal ions such as Al(III), Cu(II), Mg(II), Mn(II), Zn(II) are chelated by cbLf, even if at lower affinity than Fe(III). Ca(II) is also sequestered by the carboxylate groups of sialic acid present on glycan chains of cbLf thus provoking the release of LPS, contributing to bactericidal activity. Similarly to more than 50% of eukaryotic proteins, cbLf possesses five N-glycosylation sites, also contributing to the resistance to proteolysis and, putatively, to the protection of intestinal mucosa from pathogens. CbLfs possess several functions as anti-microbial, anti-biofilm, anti-adhesive, anti-invasive and anti-inflammatory activities. They are also relevant modulators of iron and inflammatory homeostasis. However, the efficacy of cbLfs in exerting several functions can be erratic mainly depending from integrity, degree of iron and other metal ions saturation, N-glycosylation sites and chains, desialylated forms, Ca(II) sequestration, presence of contaminants and finally the ability to enter inside nucleus.


Assuntos
Quelantes/química , Glicoproteínas/química , Proteínas de Ligação ao Ferro/química , Lactoferrina/química , Animais , Bovinos , Quelantes/farmacologia , Células Epiteliais/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Glicoproteínas/farmacologia , Humanos , Ferro/química , Proteínas de Ligação ao Ferro/farmacologia , Lactoferrina/farmacologia , Metais/química , Ligação Proteica , Estados Unidos , United States Food and Drug Administration
20.
Biometals ; 31(3): 399-414, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29453656

RESUMO

In the last 20 years, several new genes and proteins involved in iron metabolism in eukaryotes, particularly related to pathological states both in animal models and in humans have been identified, and we are now starting to unveil at the molecular level the mechanisms of iron absorption, the regulation of iron transport and the homeostatic balancing processes. In this review, we will briefly outline the general scheme of iron metabolism in humans and then focus our attention on the cellular iron export system formed by the permease ferroportin and the ferroxidase ceruloplasmin. We will finally summarize data on the role of the iron binding protein lactoferrin on the regulation of the ferroportin/ceruloplasmin couple and of other proteins involved in iron homeostasis in inflamed human macrophages.


Assuntos
Proteínas de Transporte de Cátions/genética , Ceruloplasmina/genética , Ferro/metabolismo , Lactoferrina/genética , Animais , Proteínas de Transporte de Cátions/metabolismo , Ceruloplasmina/metabolismo , Homeostase/genética , Humanos , Transporte de Íons/efeitos dos fármacos , Macrófagos/metabolismo , Mamíferos , Oxirredução , Transferrina/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA