Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(43): e2304274120, 2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37856542

RESUMO

Coupling together distinct correlated and topologically nontrivial electronic phases of matter can potentially induce novel electronic orders and phase transitions among them. Transition metal dichalcogenide compounds serve as a bedrock for exploration of such hybrid systems. They host a variety of exotic electronic phases, and their Van der Waals nature enables to admix them, either by exfoliation and stacking or by stoichiometric growth, and thereby induce novel correlated complexes. Here, we investigate the compound 4Hb-TaS2 that interleaves the Mott-insulating state of 1T-TaS2 and the putative spin liquid it hosts together with the metallic state of 2H-TaS2 and the low-temperature superconducting phase it harbors using scanning tunneling spectroscopy. We reveal a thermodynamic phase diagram that hosts a first-order quantum phase transition between a correlated Kondo-like cluster state and a depleted flat band state. We demonstrate that this intrinsic transition can be induced by an electric field and temperature as well as by manipulation of the interlayer coupling with the probe tip, hence allowing to reversibly toggle between the Kondo-like cluster and the depleted flat band states. The phase transition is manifested by a discontinuous change of the complete electronic spectrum accompanied by hysteresis and low-frequency noise. We find that the shape of the transition line in the phase diagram is determined by the local compressibility and the entropy of the two electronic states. Our findings set such heterogeneous structures as an exciting platform for systematic investigation and manipulation of Mott-metal transitions and strongly correlated phases and quantum phase transitions therein.

2.
Phys Rev Lett ; 132(16): 167102, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38701486

RESUMO

We explore the phase transitions at the onset of time-crystalline order in O(N) models driven out of equilibrium. The spontaneous breaking of time translation symmetry and its Goldstone mode are captured by an effective description with O(N)×SO(2) symmetry, where the emergent external SO(2) results from a transmutation of the internal symmetry of time translations. Using the renormalization group and the ε=4-d expansion in a leading two-loop analysis, we identify a new nonequilibrium universality class. Strikingly, it controls the long-distance physics no matter how small the microscopic breaking of equilibrium conditions is. The O(N=2)×SO(2) symmetry group is realized for magnon condensation in pumped yttrium iron garnet films and in exciton-polariton systems with a polarization degree of freedom.

3.
Phys Rev Lett ; 131(14): 146602, 2023 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-37862668

RESUMO

The Dirac material ZrTe_{5} at very low carrier density was recently found to be a nodal-line semimetal, where ultraflat bands are expected to emerge in magnetic fields parallel to the nodal-line plane. Here, we report that in very low carrier-density samples of ZrTe_{5}, when the current and the magnetic field are both along the crystallographic a axis, the current-voltage characteristics presents a pronounced nonlinearity which tends to saturate in the ultra quantum limit. The magnetic-field dependence of the nonlinear coefficient is well explained by the Boltzmann theory for flat-band transport, and we argue that this nonlinear transport is likely due to the combined effect of flat bands and charge puddles; the latter appear due to very low carrier densities.

4.
Nano Lett ; 22(1): 14-21, 2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-34935368

RESUMO

Topologically nontrivial spin textures, such as skyrmions and dislocations, display emergent electrodynamics and can be moved by spin currents over macroscopic distances. These unique properties and their nanoscale size make them excellent candidates for the development of next-generation race-track memory and unconventional computing. A major challenge for these applications and the investigation of nanoscale magnetic structures in general is the realization of suitable detection schemes. We study magnetic disclinations, dislocations, and domain walls in FeGe and reveal pronounced responses that distinguish them from the helimagnetic background. A combination of magnetic force microscopy (MFM) and micromagnetic simulations links the response to the local magnetic susceptibility, that is, characteristic changes in the spin texture driven by the MFM tip. On the basis of the findings, which we explain using nonlinear response theory, we propose a read-out scheme using superconducting microcoils, presenting an innovative approach for detecting topological spin textures and domain walls in device-relevant geometries.

5.
Phys Rev Lett ; 128(12): 127702, 2022 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-35394315

RESUMO

In one-dimensional topological superconductors driven periodically with the frequency ω, two types of topological edge modes may appear, the well-known Majorana zero mode and a Floquet Majorana mode located at the quasienergy ℏω/2. We investigate two Josephson-coupled topological quantum wires in the presence of Coulomb interactions, forming a so-called Majorana box qubit. An oscillating gate voltage can induce Floquet Majorana modes in both wires. This allows for the encoding of three qubits in a sector with fixed electron parity. If such a system is prepared by increasing the amplitude of oscillations adiabatically, it is inherently unstable as interactions resonantly create quasiparticles. This can be avoided by using instead a protocol where the oscillation frequency is increased slowly. In this case, one can find a parameter regime where the system remains stable.

6.
Phys Rev Lett ; 128(17): 176602, 2022 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-35570449

RESUMO

Topological materials with broken inversion symmetry can give rise to nonreciprocal responses, such as the current rectification controlled by magnetic fields via magnetochiral anisotropy. Bulk nonreciprocal responses usually stem from relativistic corrections and are always very small. Here we report our discovery that ZrTe_{5} crystals in proximity to a topological quantum phase transition present gigantic magnetochiral anisotropy, which is the largest ever observed to date. We argue that a very low carrier density, inhomogeneities, and a torus-shaped Fermi surface induced by breaking of inversion symmetry in a Dirac material are central to explain this extraordinary property.

7.
Phys Rev Lett ; 127(17): 173606, 2021 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-34739289

RESUMO

We develop an approach to describe the Dicke transition of interacting many-particle systems strongly coupled to the light of a lossy cavity. A mean-field approach is combined with a perturbative treatment of fluctuations beyond mean field, which becomes exact in the thermodynamic limit. These fluctuations completely change the nature of the steady state, determine the thermal character of the transition, and lead to universal properties of the emerging self-organized states. We validate our results by comparing them with time-dependent matrix-product-state calculations.

8.
Phys Rev Lett ; 125(11): 116601, 2020 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-32976013

RESUMO

Coupling a many-body localized system to a thermal bath breaks local conservation laws and washes out signatures of localization. When the bath is nonthermal or when the system is also weakly driven, local conserved quantities acquire a highly nonthermal stationary value. We demonstrate how this property can be used to study the many-body localization phase transition in weakly open systems. Here, the strength of the coupling to the nonthermal baths plays a similar role as a finite temperature in a T=0 quantum phase transition. By tuning this parameter, we can detect key features of the many-body localization (MBL) transition: the divergence of the dynamical exponent due to Griffiths effects in one dimension and the critical disorder strength. We apply these ideas to study the MBL critical point numerically. The possibility to observe critical signatures of the MBL transition in an open system allows for new numerical approaches that overcome the limitations of exact diagonalization studies. Here, we propose a scalable numerical scheme to study the MBL critical point using matrix-product operator solution to the Lindblad equation.

9.
Phys Rev Lett ; 121(26): 267603, 2018 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-30636167

RESUMO

Because of the presence of phonons, many-body localization (MBL) does not occur in disordered solids, even if disorder is strong. Local conservation laws characterizing an underlying MBL phase decay due to the coupling to phonons. We show that this decay can be compensated when the system is driven out of equilibrium. The resulting variations of the local temperature provide characteristic fingerprints of an underlying MBL phase. We consider a one-dimensional disordered spin chain, which is weakly coupled to a phonon bath and weakly irradiated by white light. The irradiation has weak effects in the ergodic phase. However, if the system is in the MBL phase, irradiation induces strong temperature variations despite the coupling to phonons. Temperature variations can be used similar to an order parameter to detect MBL phases, the phase transition, and a MBL correlation length.

10.
Phys Rev Lett ; 120(10): 106801, 2018 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-29570315

RESUMO

We study chemically gated bilayer graphene using scanning tunneling microscopy and spectroscopy complemented by tight-binding calculations. Gating is achieved by intercalating Cs between bilayer graphene and Ir(111), thereby shifting the conduction band minima below the chemical potential. Scattering between electronic states (both intraband and interband) is detected via quasiparticle interference. However, not all expected processes are visible in our experiment. We uncover two general effects causing this suppression: first, intercalation leads to an asymmetrical distribution of the states within the two layers, which significantly reduces the scanning tunneling spectroscopy signal of standing waves mainly present in the lower layer; second, forward scattering processes, connecting points on the constant energy contours with parallel velocities, do not produce pronounced standing waves due to destructive interference. We present a theory to describe the interference signal for a general n-band material.

11.
Phys Rev Lett ; 119(13): 137201, 2017 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-29341720

RESUMO

Skyrmions are nanometric spin whirls that can be stabilized in magnets lacking inversion symmetry. The properties of isolated Skyrmions embedded in a ferromagnetic background have been intensively studied. We show that single Skyrmions and clusters of Skyrmions can also form in the helical phase and investigate theoretically their energetics and dynamics. The helical background provides natural one-dimensional channels along which a Skyrmion can move rapidly. In contrast to Skyrmions in ferromagnets, the Skyrmion-Skyrmion interaction has a strong attractive component and thus Skyrmions tend to form clusters with characteristic shapes. These clusters are directly observed in transmission electron microscopy measurements in thin films of Cu_{2}OSeO_{3}. Topological quantization, high mobility, and the confinement of Skyrmions in channels provided by the helical background may be useful for future spintronics devices.

12.
Phys Rev Lett ; 115(17): 177205, 2015 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-26551141

RESUMO

Three-dimensional (3D) variants of the Kitaev model can harbor gapless spin liquids with a Majorana Fermi surface on certain tricoordinated lattice structures such as the recently introduced hyperoctagon lattice. Here, we investigate Fermi surface instabilities arising from additional spin exchange terms (such as a Heisenberg coupling) which introduce interactions between the emergent Majorana fermion degrees of freedom. We show that independent of the sign and structure of the interactions, the Majorana surface is always unstable. Generically, the system spontaneously doubles its unit cell at exponentially small temperatures and forms a spin liquid with line nodes. Depending on the microscopics, further symmetries of the system can be broken at this transition. These spin-Peierls instabilities of a 3D spin liquid are closely related to BCS instabilities of fermions.

13.
Phys Rev Lett ; 113(1): 010601, 2014 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-25032914

RESUMO

The dynamics of interacting bosons in one dimension following the sudden switching on of a weak disordered potential is investigated. On time scales before quasiparticles scatter (prethermalized regime), the dephasing from random elastic forward scattering causes all correlations to decay exponentially fast, but the system remains far from thermal equilibrium. For longer times, the combined effect of disorder and interactions gives rise to inelastic scattering and to thermalization. A novel quantum kinetic equation accounting for both disorder and interactions is employed to study the dynamics. Thermalization turns out to be most effective close to the superfluid-Bose-glass critical point where nonlinearities become more and more important. The numerically obtained thermalization times are found to agree well with analytic estimates.

14.
Nat Mater ; 15(12): 1231-1232, 2016 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-27876754
15.
Phys Rev Lett ; 109(23): 235304, 2012 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-23368218

RESUMO

We study the Mott transition of a mixed Bose-Fermi system of ultracold atoms in an optical lattice, where the number of (spinless) fermions and bosons adds up to one atom per lattice, n(F)+n(B)=1. For weak interactions, a Fermi surface coexists with a Bose-Einstein condensate while for strong interaction the system is incompressible but still characterized by a Fermi surface of composite fermions. At the critical point, the spectral function of the fermions A(k,ω) exhibits a pseudogapped behavior, rising as |ω| at the Fermi momentum, while in the Mott phase it is fully gapped. Taking into account the interaction between the critical modes leads at very low temperatures either to p-wave pairing or the transition is driven weakly first order. The same mechanism should also be important in antiferromagnetic metals with a small Fermi surface.

16.
Phys Rev Lett ; 106(10): 106402, 2011 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-21469815

RESUMO

The properties of a local spin S=1/2 coupled to K independent wires is studied in the presence of bias voltages which drive the system out of thermal equilibrium. For K≫1, a perturbative renormalization group approach is employed to construct the voltage-dependent scaling function for the conductance and the T matrix. In contrast to the single-channel case, the Kondo resonance is split even by bias voltages small compared to the Kondo temperature T(K), V≪T(K). Besides the applied voltage V, the current-induced decoherence rate Γ≪V controls the physical properties of the system. While the presence of V changes the structure of the renormalization group considerably, decoherence turns out to be very effective in prohibiting the flow towards new nonequilibrium fixed points even in variants of the Kondo model where currents are partially suppressed.

17.
Phys Rev Lett ; 106(25): 250602, 2011 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-21770621

RESUMO

We consider a cloud of fermionic atoms in an optical lattice described by a Hubbard model with an additional linear potential. While homogeneous interacting systems mainly show damped Bloch oscillations and heating, a finite cloud behaves differently: It expands symmetrically such that gains of potential energy at the top are compensated by losses at the bottom. Interactions stabilize the necessary heat currents by inducing gradients of the inverse temperature 1/T, with T<0 at the bottom of the cloud. An analytic solution of hydrodynamic equations shows that the width of the cloud increases with t^{1/3} for long times consistent with results from our Boltzmann simulations.

18.
Nature ; 465(7300): 880-1, 2010 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-20559376
19.
Nat Commun ; 12(1): 1038, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33589609

RESUMO

The non-trivial topology of three-dimensional topological insulators dictates the appearance of gapless Dirac surface states. Intriguingly, when made into a nanowire, quantum confinement leads to a peculiar gapped Dirac sub-band structure. This gap is useful for, e.g., future Majorana qubits based on TIs. Furthermore, these sub-bands can be manipulated by a magnetic flux and are an ideal platform for generating stable Majorana zero modes, playing a key role in topological quantum computing. However, direct evidence for the Dirac sub-bands in TI nanowires has not been reported so far. Here, using devices fabricated from thin bulk-insulating (Bi1-xSbx)2Te3 nanowires we show that non-equidistant resistance peaks, observed upon gate-tuning the chemical potential across the Dirac point, are the unique signatures of the quantized sub-bands. These TI nanowires open the way to address the topological mesoscopic physics, and eventually the Majorana physics when proximitized by an s-wave superconductor.

20.
Phys Rev Lett ; 105(22): 220405, 2010 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-21231371

RESUMO

As highly tunable interacting systems, cold atoms in optical lattices are ideal to realize and observe negative absolute temperatures, T<0. We show theoretically that, by reversing the confining potential, stable superfluid condensates at finite momentum and T<0 can be created with low entropy production for attractive bosons. They may serve as "smoking gun" signatures of equilibrated T<0. For fermions, we analyze the time scales needed to equilibrate to T<0. For moderate interactions, the equilibration time is proportional to the square of the radius of the cloud and grows with increasing interaction strengths as atoms and energy are transported by diffusive processes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA