Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Mutat Res ; 502(1-2): 25-37, 2002 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-11996969

RESUMO

Genetic selection assays were developed to measure rates of deletion of one or more (CAG).(CTG) repeats, or an entire repeat tract, in Escherichia coli. In-frame insertions of >or=25 repeats in the chloramphenicol acetyltransferase (CAT) gene of pBR325 resulted in a chloramphenicol-sensitive (Cm(s)) phenotype. When (CAG)25 comprised the leading template strand, deletion of one or more repeats resulted in a chloramphenicol resistant (Cm(r)) phenotype at a rate of 4 x 10(-2) revertants per cell per generation. The mutation rates for plasmids containing (CAG)43 or (CAG)79 decreased significantly. When (CTG)n comprised the leading template strand the Cm(r) mutation rates were 100-1000 lower than for the opposite orientation. As an initial application of this assay, the effects of mutations influencing mismatch repair and recombination were examined. The methyl directed mismatch repair system increased repeat stability only when (CTG)n comprised the leading template strand. Replication errors made with the opposite repeat orientation were apparently not recognized. For the (CAG)n leading strand orientation, mutation rates were reduced as much as 3000-fold in a recA- strain. In a second assay, out-of-frame mutation inserts underwent complete deletion at rates ranging from about 5 x 10(-9) to 1 x 10(-7) per cell per generation. These assays allow careful quantitation of triplet repeat instability in E. coli and provide a way to examine the effects of mutations in replication, repair, and recombination on repeat instability.


Assuntos
Escherichia coli/genética , Deleção de Sequência , Repetições de Trinucleotídeos , Pareamento Incorreto de Bases , Sequência de Bases , Reparo do DNA , Replicação do DNA , Dados de Sequência Molecular , Plasmídeos , Recombinação Genética
2.
Mutat Res ; 554(1-2): 95-109, 2004 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-15450408

RESUMO

The expansion of trinucleotide repeats has been implicated in 17 neurological diseases to date. Factors leading to the instability of trinucleotide repeat sequences have thus been an area of intense interest. Certain genes involved in mismatch repair, recombination, nucleotide excision repair, and replication influence the instability of trinucleotide repeats in both Escherichia coli and yeast. Using a genetic assay for repeat deletion in E. coli, the effect of mutations in the recA, recB, and lexA genes on the rate of deletion of (CTG)n.(CAG)n repeats of varying lengths were examined. The results indicate that mutations in recA and recB, which decrease the rate of recombination, had a stabilizing effect on (CAG)n.(CTG)n repeats decreasing the high rates of deletion seen in recombination proficient cells. Thus, recombination proficiency correlates with high rates of genetic instability in triplet repeats. Induction of the SOS system, however, did not appear to play a significant role in repeat instability, nor did the presence of triplet repeats in cells turn on the SOS response. A model is suggested where deletion during exponential growth may result from attempts to restart replication when paused at triplet repeats.


Assuntos
Escherichia coli/genética , Recombinação Genética , Repetições de Trinucleotídeos , Sequência de Bases , Primers do DNA , Sequências Repetitivas de Ácido Nucleico , Resposta SOS em Genética , Deleção de Sequência
3.
Mutat Res ; 502(1-2): 39-46, 2002 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-11996970

RESUMO

Escherichia coli has provided an important model system for understanding the molecular basis for genetic instabilities associated with repeated DNA. Changes in triplet repeat length during growth following transformation in E. coli have been used as a measure of repeat instability. However, very little is known about the molecular and biological changes that may occur on transformation. Since only a small proportion of viable cells become competent, uncertainty exists regarding the nature of these transformed cells. To establish whether the process of transformation can be inherently mutagenic for certain DNA sequences, we used a genetic assay in E. coli to compare the frequency of genetic instabilities associated with transformation with those occurring in plasmid maintained in E. coli. Our results indicate that, for certain DNA sequences, bacterial transformation can be highly mutagenic. The deletion frequency of a 106 bp perfect inverted repeat is increased by as much as a factor of 2 x 10(5) following transformation. The high frequency of instability was not observed when cells stably harboring plasmid were rendered competent. Thus, the process of transformation was required to observe the instability. Instabilities of (CAG).(CTG) repeats are also dramatically elevated upon transformation. The magnitude of the instability is dependent on the nature and length of the repeat. Differences in the methylation status of plasmid used for transformation and the methylation and restriction/modification systems present in the bacterial strain used must also be considered in repeat instability measurements. Moreover, different E. coli genetic backgrounds show different levels of instability during transformation.


Assuntos
DNA Bacteriano/genética , Escherichia coli/genética , Sequências Repetitivas de Ácido Nucleico , Transformação Genética , Replicação do DNA , DNA Bacteriano/biossíntese
5.
J Biol Chem ; 281(38): 27950-5, 2006 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-16873366

RESUMO

(CAG)(n)*(CTG)(n) expansion is associated with many neurodegenerative diseases. Repeat instability has been extensively studied in bacterial plasmids, where repeats undergo deletion at high rates. We report an assay for (CAG)(n)*(CTG)(n) deletion from the chloramphenicol acetyltransferase gene integrated into the Escherichia coli chromosome. In strain AB1157, deletion rates for 25-60 (CAG) x (CTG) repeats integrated in the chromosome ranged from 6.88 x 10(-9) to 1.33 x 10(-10), or approximately 6,300 to 660,000-fold lower than in plasmid pBR325. In contrast to the situation in plasmids, deletions occur at a higher rate when (CTG)(43), rather than (CAG)(43), comprised the leading template strand, and complete rather than partial deletions were the predominant mutation observed. Repeats were also stable on long term growth following multiple passages through exponential and stationary phase. Mutations in priA and recG increased or decreased deletion rates, but repeats were still greatly stabilized in the chromosome. The remarkable stability of (CAG)(n) x (CTG)(n) repeats in the E. coli chromosome may result from the differences in the mechanisms for replication or the probability for recombination afforded by a high plasmid copy number. The integration of (CAG)(n) x (CTG)(n) repeats into the chromosome provides a model system in which the inherent stability of these repeats reflects that in the human genome more closely.


Assuntos
Cromossomos Bacterianos , Escherichia coli/genética , Instabilidade Genômica , Doenças Neurodegenerativas/genética , Repetições de Trinucleotídeos , Deleção Cromossômica , Humanos , Plasmídeos
6.
J Bacteriol ; 186(10): 3270-3, 2004 May.
Artigo em Inglês | MEDLINE | ID: mdl-15126493

RESUMO

A temperate, type IV pilus-dependent, double-stranded DNA bacteriophage named DMS3 was isolated from a clinical strain of Pseudomonas aeruginosa. A clear-plaque variant of this bacteriophage was isolated. DMS3 is capable of mediating generalized transduction within and between P. aeruginosa strains PA14 and PAO1, thus providing a useful tool for the genetic analysis of P. aeruginosa.


Assuntos
Fagos de Pseudomonas/genética , Pseudomonas aeruginosa/virologia , Transdução Genética , Fímbrias Bacterianas/fisiologia , Receptores Virais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA