Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Proc Natl Acad Sci U S A ; 117(46): 28625-28631, 2020 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-33139554

RESUMO

Evidence linking amyloid beta (Aß) cellular uptake and toxicity has burgeoned, and mechanisms underlying this association are subjects of active research. Two major, interconnected questions are whether Aß uptake is aggregation-dependent and whether it is sequence-specific. We recently reported that the neuronal uptake of Aß depends significantly on peptide chirality, suggesting that the process is predominantly receptor-mediated. Over the past decade, the cellular prion protein (PrPC) has emerged as an important mediator of Aß-induced toxicity and of neuronal Aß internalization. Here, we report that the soluble, nonfibrillizing Aß (1-30) peptide recapitulates full-length Aß stereoselective cellular uptake, allowing us to decouple aggregation from cellular, receptor-mediated internalization. Moreover, we found that Aß (1-30) uptake is also dependent on PrPC expression. NMR-based molecular-level characterization identified the docking site on PrPC that underlies the stereoselective binding of Aß (1-30). Our findings therefore identify a specific sequence within Aß that is responsible for the recognition of the peptide by PrPC, as well as PrPC-dependent cellular uptake. Further uptake stereodifferentiation in PrPC-free cells points toward additional receptor-mediated interactions as likely contributors for Aß cellular internalization. Taken together, our results highlight the potential of targeting cellular surface receptors to inhibit Aß cellular uptake as an alternative route for future therapeutic development for Alzheimer's disease.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Fragmentos de Peptídeos/metabolismo , Proteínas PrPC/metabolismo , Células HEK293 , Humanos
2.
Inorg Chem ; 61(37): 14626-14640, 2022 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-36073854

RESUMO

Although Alzheimer's disease (AD) was first described over a century ago, it remains the leading cause of age-related dementia. Innumerable changes have been linked to the pathology of AD; however, there remains much discord regarding which might be the initial cause of the disease. The "amyloid cascade hypothesis" proposes that the amyloid ß (Aß) peptide is central to disease pathology, which is supported by elevated Aß levels in the brain before the development of symptoms and correlations of amyloid burden with cognitive impairment. The "metals hypothesis" proposes a role for metal ions such as iron, copper, and zinc in the pathology of AD, which is supported by the accumulation of these metals within amyloid plaques in the brain. Metals have been shown to induce aggregation of Aß, and metal ion chelators have been shown to reverse this reaction in vitro. 8-Hydroxyquinoline-based chelators showed early promise as anti-Alzheimer's drugs. Both 5-chloro-7-iodo-8-hydroxyquinoline (CQ) and 5,7-dichloro-2-[(dimethylamino)methyl]-8-hydroxyquinoline (PBT2) underwent unsuccessful clinical trials for the treatment of AD. To gain insight into the mechanism of action of 8HQs, we have investigated the potential interaction of CQ, PBT2, and 5,7-dibromo-8-hydroxyquinoline (B2Q) with Cu(II)-bound Aß(1-42) using X-ray absorption spectroscopy (XAS), high energy resolution fluorescence detected (HERFD) XAS, and electron paramagnetic resonance (EPR). By XAS, we found CQ and B2Q sequestered ∼83% of the Cu(II) from Aß(1-42), whereas PBT2 sequestered only ∼59% of the Cu(II) from Aß(1-42), suggesting that CQ and B2Q have a higher relative Cu(II) affinity than PBT2. From our EPR, it became clear that PBT2 sequestered Cu(II) from a heterogeneous mixture of Cu(II)Aß(1-42) species in solution, leaving a single Cu(II)Aß(1-42) species. It follows that the Cu(II) site in this Cu(II)Aß(1-42) species is inaccessible to PBT2 and may be less solvent-exposed than in other Cu(II)Aß(1-42) species. We found no evidence to suggest that these 8HQs form ternary complexes with Cu(II)Aß(1-42).


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Clioquinol , Doença de Alzheimer/tratamento farmacológico , Peptídeos beta-Amiloides/química , Quelantes/farmacologia , Quelantes/uso terapêutico , Clioquinol/análogos & derivados , Clioquinol/química , Cobre/química , Humanos , Íons , Metais , Oxiquinolina/química , Oxiquinolina/farmacologia , Fragmentos de Peptídeos , Solventes , Zinco
3.
Biochemistry ; 60(41): 3058-3070, 2021 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-34609135

RESUMO

Retinal guanylate cyclases (RetGCs) are regulated by a family of guanylate cyclase-activating proteins (called GCAP1-7). GCAPs form dimers that bind to Ca2+ and confer Ca2+ sensitive activation of RetGC during visual phototransduction. The GCAP5 homologue from zebrafish contains two nonconserved cysteine residues (Cys15 and Cys17) that bind to ferrous ion, which stabilizes GCAP5 dimerization and diminishes its ability to activate RetGC. Here, we present NMR and EPR-DEER structural analysis of a GCAP5 dimer in the Mg2+-bound, Ca2+-free, Fe2+-free activator state. The NMR-derived structure of GCAP5 is similar to the crystal structure of Ca2+-bound GCAP1 (root-mean-square deviation of 2.4 Å), except that the N-terminal helix of GCAP5 is extended by two residues, which allows the sulfhydryl groups of Cys15 and Cys17 to become more solvent exposed in GCAP5 to facilitate Fe2+ binding. Nitroxide spin-label probes were covalently attached to particular cysteine residues engineered in GCAP5: C15, C17, T26C, C28, N56C, C69, C105, N139C, E152C, and S159C. The intermolecular distance of each spin-label probe in dimeric GCAP5 (measured by EPR-DEER) defined restraints for calculating the dimer structure by molecular docking. The GCAP5 dimer possesses intermolecular hydrophobic contacts involving the side chain atoms of H18, Y21, M25, F72, V76, and W93, as well as an intermolecular salt bridge between R22 and D71. The structural model of the GCAP5 dimer was validated by mutations (H18E/Y21E, H18A/Y21A, R22D, R22A, M25E, D71R, F72E, and V76E) at the dimer interface that disrupt dimerization of GCAP5 and affect the activation of RetGC. We propose that GCAP5 dimerization may play a role in the Fe2+-dependent regulation of cyclase activity in zebrafish photoreceptors.


Assuntos
Proteínas Ativadoras de Guanilato Ciclase/química , Proteínas de Peixe-Zebra/química , Sequência de Aminoácidos , Animais , Cisteína/química , Espectroscopia de Ressonância de Spin Eletrônica , Proteínas Ativadoras de Guanilato Ciclase/genética , Proteínas Ativadoras de Guanilato Ciclase/metabolismo , Magnésio/química , Magnésio/metabolismo , Simulação de Acoplamento Molecular , Mutação , Ressonância Magnética Nuclear Biomolecular , Ligação Proteica , Multimerização Proteica , Estrutura Quaternária de Proteína , Peixe-Zebra , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
4.
FASEB J ; 34(6): 8734-8748, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32385908

RESUMO

The conserved central region (CR) of PrPC has been hypothesized to serve as a passive linker connecting the protein's toxic N-terminal and globular C-terminal domains. Yet, deletion of the CR causes neonatal fatality in mice, implying the CR possesses a protective function. The CR encompasses the regulatory α-cleavage locus, and additionally facilitates a regulatory metal ion-promoted interaction between the PrPC N- and C-terminal domains. To elucidate the role of the CR and determine why CR deletion generates toxicity, we designed PrPC constructs wherein either the cis-interaction or α-cleavage are selectively prevented. These constructs were interrogated using nuclear magnetic resonance, electrophysiology, and cell viability assays. Our results demonstrate the CR is not a passive linker and the native sequence is crucial for its protective role over the toxic N-terminus, irrespective of α-cleavage or the cis-interaction. Additionally, we find that the CR facilitates homodimerization of PrPC , attenuating the toxicity of the N-terminus.


Assuntos
Sequência Conservada/fisiologia , Proteínas PrPC/metabolismo , Proteínas Priônicas/metabolismo , Linhagem Celular , Sobrevivência Celular/fisiologia , Células HEK293 , Humanos , Espectroscopia de Ressonância Magnética/métodos
5.
Inorg Chem ; 59(23): 17519-17534, 2020 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-33226796

RESUMO

PBT2 (5,7-dichloro-2-[(dimethylamino)methyl]-8-hydroxyquinoline) is a small Cu(II)-binding drug that has been investigated in the treatment of neurodegenerative diseases, namely, Alzheimer's disease (AD). PBT2 is thought to be highly effective at crossing the blood-brain barrier and has been proposed to exert anti-Alzheimer's effects through the modulation of metal ion concentrations in the brain, specifically the sequestration of Cu(II) from amyloid plaques. However, despite promising initial results in animal models and in clinical trials where PBT2 was shown to improve cognitive function, larger-scale clinical trials did not find PBT2 to have a significant effect on the amyloid plaque burden compared with controls. We propose that the results of these clinical trials likely point to a more complex mechanism of action for PBT2 other than simple Cu(II) sequestration. To this end, herein we have investigated the solution chemistry of Cu(II) coordination by PBT2 primarily using X-ray absorption spectroscopy (XAS), high-energy-resolution fluorescence-detected XAS, and electron paramagnetic resonance. We propose that a novel bis-PBT2 Cu(II) complex with asymmetric coordination may coexist in solution with a symmetric four-coordinate Cu(II)-bis-PBT2 complex distorted from coplanarity. Additionally, PBT2 is a more flexible ligand than other 8HQs because it can act as both a bidentate and a tridentate ligand as well as coordinate Cu(II) in both 1:1 and 2:1 PBT2/Cu(II) complexes.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Quelantes/uso terapêutico , Clioquinol/análogos & derivados , Complexos de Coordenação/uso terapêutico , Cobre/uso terapêutico , Fármacos Neuroprotetores/farmacologia , Deficiências na Proteostase/tratamento farmacológico , Animais , Quelantes/síntese química , Quelantes/química , Clioquinol/química , Clioquinol/uso terapêutico , Complexos de Coordenação/síntese química , Complexos de Coordenação/química , Cobre/química , Teoria da Densidade Funcional , Humanos , Ligantes , Estrutura Molecular , Fármacos Neuroprotetores/síntese química , Fármacos Neuroprotetores/química , Espectroscopia por Absorção de Raios X
6.
Biophys J ; 116(4): 610-620, 2019 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-30678993

RESUMO

The cellular prion protein (PrPC) is a zinc-binding protein that contributes to the regulation of Zn2+ and other divalent species of the central nervous system. Zn2+ coordinates to the flexible, N-terminal repeat region of PrPC and drives a tertiary contact between this repeat region and a well-defined cleft of the C-terminal domain. The tertiary structure promoted by Zn2+ is thought to regulate inherent PrPC toxicity. Despite the emerging consensus regarding the interaction between Zn2+ and PrPC, there is little direct spectroscopic confirmation of the metal ion's coordination details. Here, we address this conceptual gap by using Cd2+ as a surrogate for Zn2+. NMR finds that Cd2+ binds exclusively to the His imidazole side chains of the repeat segment, with a dissociation constant of ∼1.2 mM, and promotes an N-terminal-C-terminal cis interaction very similar to that observed with Zn2+. Analysis of 113Cd NMR spectra of PrPC, along with relevant control proteins and peptides, suggests that coordination of Cd2+ in the full-length protein is consistent with a three- or four-His geometry. Examination of the mutation E199K in mouse PrPC (E200K in humans), responsible for inherited Creutzfeldt-Jakob disease, finds that the mutation lowers metal ion affinity and weakens the cis interaction. These findings not only provide deeper insight into PrPC metal ion coordination but they also suggest new perspectives on the role of familial mutations in prion disease.


Assuntos
Ressonância Magnética Nuclear Biomolecular , Proteínas Priônicas/química , Proteínas Priônicas/metabolismo , Zinco/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Cádmio/química , Histidina/química , Imidazóis/química , Modelos Moleculares , Mutação , Proteínas Priônicas/genética , Ligação Proteica
7.
Inorg Chem ; 58(9): 6294-6311, 2019 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-31013069

RESUMO

Alzheimer's disease (AD) is the main cause of age-related dementia and currently affects approximately 5.7 million Americans. Major brain changes associated with AD pathology include accumulation of amyloid beta (Aß) protein fragments and formation of extracellular amyloid plaques. Redox-active metals mediate oligomerization of Aß, and the resultant metal-bound oligomers have been implicated in the putative formation of harmful, reactive species that could contribute to observed oxidative damage. In isolated plaque cores, Cu(II) is bound to Aß via histidine residues. Despite numerous structural studies of Cu(II) binding to synthetic Aß in vitro, there is still uncertainty surrounding Cu(II) coordination in Aß. In this study, we used X-ray absorption spectroscopy (XAS) and high energy resolution fluorescence detected (HERFD) XAS to investigate Cu(II) coordination in Aß(1-42) under various solution conditions. We found that the average coordination environment in Cu(II)Aß(1-42) is sensitive to X-ray photoreduction, changes in buffer composition, peptide concentration, and solution pH. Fitting of the extended X-ray absorption fine structure (EXAFS) suggests Cu(II) is bound in a mixture of coordination environments in monomeric Aß(1-42) under all conditions studied. However, it was evident that on average only a single histidine residue coordinates Cu(II) in monomeric Aß(1-42) at pH 6.1, in addition to 3 other oxygen or nitrogen ligands. Cu(II) coordination in Aß(1-42) at pH 7.4 is similarly 4-coordinate with oxygen and nitrogen ligands, although an average of 2 histidine residues appear to coordinate at this pH. At pH 9.0, the average Cu(II) coordination environment in Aß(1-42) appears to be 5-coordinate with oxygen and nitrogen ligands, including two histidine residues.


Assuntos
Peptídeos beta-Amiloides/química , Cobre/química , Histidina/química , Fragmentos de Peptídeos/química , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Cobre/metabolismo , Histidina/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Oxirredução , Fragmentos de Peptídeos/metabolismo , Espectroscopia por Absorção de Raios X
8.
Inorg Chem ; 56(3): 1534-1545, 2017 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-28079376

RESUMO

Two manganese(I) carbonyl complexes derived from 2-(pyridyl)benzothiazole (pbt) and 1,10-phenanthroline (phen) release carbon monoxide (CO) under low-power broad-band visible-light illumination. CO photorelease from [Mn(CO)3(pbt)(PTA)]CF3SO3 (1, where PTA = 1,3,5-triaza-7-phosphaadamantane) is accompanied by an emergence of a strong fluorescence around 400 nm from almost nonfluorescent preirradiated 1. However, [Mn(CO)3(phen)(PTA)]CF3SO3 (2) showed no such phenomenon upon prolonged illumination under similar experimental conditions. The two analogous rhenium(I) complexes, namely, [Re(CO)3(pbt)(PTA)]CF3SO3 (3) and [Re(CO)3(phen)(PTA)]CF3SO3 (4), have also been synthesized and characterized to compare their photo properties with the manganese congeners. Complexes 3 and 4 exhibit moderate CO release upon irradiation with low-power UV light. All four complexes are highly soluble in anaerobic/aerobic aqueous media and are also considerably more stable when kept under dark conditions. The inherently luminescent rhenium complex 3 was utilized to demonstrate cellular internalization of these types of compounds by MDA-MB-231 (human breast cancer) cells, while the two biocompatible manganese(I) complexes (1 and 2) have been applied to assess the cell viability of these malignant cells upon CO delivery.


Assuntos
Materiais Biocompatíveis/farmacologia , Dióxido de Carbono/química , Complexos de Coordenação/farmacologia , Luz , Materiais Biocompatíveis/síntese química , Materiais Biocompatíveis/química , Sobrevivência Celular/efeitos dos fármacos , Complexos de Coordenação/síntese química , Complexos de Coordenação/química , Cristalografia por Raios X , Relação Dose-Resposta a Droga , Humanos , Modelos Moleculares , Estrutura Molecular , Solubilidade , Relação Estrutura-Atividade , Células Tumorais Cultivadas , Água/química
9.
J Mol Biol ; 432(16): 4408-4425, 2020 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-32473880

RESUMO

The cellular prion protein (PrPC) comprises two domains: a globular C-terminal domain and an unstructured N-terminal domain. Recently, copper has been observed to drive tertiary contact in PrPC, inducing a neuroprotective cis interaction that structurally links the protein's two domains. The location of this interaction on the C terminus overlaps with the sites of human pathogenic mutations and toxic antibody docking. Combined with recent evidence that the N terminus is a toxic effector regulated by the C terminus, there is an emerging consensus that this cis interaction serves a protective role, and that the disruption of this interaction by misfolded PrP oligomers may be a cause of toxicity in prion disease. We demonstrate here that two highly conserved histidines in the C-terminal domain of PrPC are essential for the protein's cis interaction, which helps to protect against neurotoxicity carried out by its N terminus. We show that simultaneous mutation of these histidines drastically weakens the cis interaction and enhances spontaneous cationic currents in cultured cells, the first C-terminal mutant to do so. Whereas previous studies suggested that Cu2+ coordination was localized solely to the protein's N-terminal domain, we find that both domains contribute equatorially coordinated histidine residue side-chains, resulting in a novel bridging interaction. We also find that extra N-terminal histidines in pathological familial mutations involving octarepeat expansions inhibit this interaction by sequestering copper from the C terminus. Our findings further establish a structural basis for PrPC's C-terminal regulation of its otherwise toxic N terminus.


Assuntos
Cobre/metabolismo , Mutação , Proteínas Priônicas/química , Proteínas Priônicas/metabolismo , Animais , Expansão das Repetições de DNA , Histidina/metabolismo , Camundongos , Modelos Moleculares , Simulação de Dinâmica Molecular , Proteínas Priônicas/genética , Conformação Proteica , Domínios Proteicos , Dobramento de Proteína
10.
Nanoscale Adv ; 2(3): 1074-1083, 2020 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36133054

RESUMO

Design and engineering of graphene-based functional nanomaterials for effective antimicrobial applications has been attracting extensive interest. In the present study, graphene oxide quantum dots (GOQDs) were prepared by chemical exfoliation of carbon fibers and exhibited apparent antimicrobial activity. Transmission electron microscopic measurements showed that the lateral length ranged from a few tens to a few hundred nanometers. Upon reduction by sodium borohydride, whereas the UV-vis absorption profile remained largely unchanged, steady-state photoluminescence measurements exhibited a marked blue-shift and increase in intensity of the emission, due to (partial) removal of phenanthroline-like structural defects within the carbon skeletons. Consistent results were obtained in Raman and time-resolved photoluminescence measurements. Interestingly, the samples exhibited apparent, but clearly different, antimicrobial activity against Staphylococcus epidermidis cells. In the dark and under photoirradiation (400 nm), the as-produced GOQDs exhibited markedly higher cytotoxicity than the chemically reduced counterparts, likely because of (i) effective removal by NaBH4 reduction of redox-active phenanthroline-like moieties that interacted with the electron-transport chain of the bacterial cells, and (ii) diminished production of hydroxyl radicals that were potent bactericidal agents after chemical reduction as a result of increased conjugation within the carbon skeletons.

11.
J Phys Chem Lett ; 11(3): 1162-1169, 2020 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-31967831

RESUMO

Mn-doped CsPbBr3 perovskite magic sized clusters (PMSCs) are synthesized for the first time using benzoic acid and benzylamine as passivating ligands and MnCl2·4H2O and MnBr2 as the Mn2+ dopant sources at room temperature. The same approach is used to prepare Mn-doped CsPbBr3 perovskite quantum dots (PQDs). The concentration of MnX2 (X = Cl or Br) affects the excitonic absorption of the PMSCs and PQDs. A higher concentration of MnX2 favors PMSCs over PQDs as well as higher photoluminescence (PL) quantum yields (QYs) and PL stability. The large ratio between the characteristic Mn emission (∼590 nm) and the host band-edge emission shows efficient energy transfer from the host exciton to the Mn2+ dopant. PL excitation, electron paramagnetic resonance, and time-resolved PL results all support Mn2+ doping in CsPbBr3, which likely replaces Pb2+ ions. This study establishes a new method for synthesizing Mn-doped PMSCs with good PL stability, high PLQY and highly effective passivation.

12.
PLoS One ; 13(3): e0193947, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29513743

RESUMO

Retinal guanylyl cyclases (RetGCs) in vertebrate photoreceptors are regulated by the guanylyl cyclase activator proteins (GCAP1 and GCAP2). Here, we report EPR double electron-electron resonance (DEER) studies on the most ubiquitous GCAP isoform, GCAP1 and site-directed mutagenesis analysis to determine an atomic resolution structural model of a GCAP1 dimer. Nitroxide spin-label probes were introduced at individual GCAP1 residues: T29C, E57C, E133C, and E154C. The intermolecular distance of each spin-label probe (measured by DEER) defined restraints for calculating the GCAP1 dimeric structure by molecular docking. The DEER-derived structural model of the GCAP1 dimer was similar within the experimental error for both the Mg2+-bound activator and Ca2+-bound inhibitor states (RMSD < 2.0 Å). The GCAP1 dimer possesses intermolecular hydrophobic contacts involving the side chain atoms of H19, Y22, F73 and V77. The structural model of the dimer was validated by GCAP1 mutations (H19R, Y22D, F73E, and V77E) at the dimer interface that each abolished protein dimerization. Previous studies have shown that each of these mutants either diminished or completely suppressed the ability of GCAP1 to activate the cyclase. These results suggest that GCAP1 dimerization may affect compartmentalization of GCAP1 in the photoreceptors and/or affect regulation of the cyclase activity.


Assuntos
Proteínas Ativadoras de Guanilato Ciclase/química , Regulação Alostérica , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Catálise , Bovinos , Dimerização , Espectroscopia de Ressonância de Spin Eletrônica , Proteínas Ativadoras de Guanilato Ciclase/metabolismo , Modelos Moleculares , Simulação de Acoplamento Molecular , Mutagênese Sítio-Dirigida , Conformação Proteica , Proteínas Recombinantes/química , Marcadores de Spin
13.
Nanoscale ; 10(1): 158-166, 2017 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-29143052

RESUMO

Synthesis of new, highly active antibacterial agents has become increasingly important in light of emerging antibiotic resistance. In the present study, ZnO/graphene quantum dot (GQD) nanocomposites were produced by a facile hydrothermal method and characterized by an array of microscopic and spectroscopic measurements, including transmission electron microscopy, X-ray photoelectron spectroscopy, UV-vis and photoluminescence spectroscopy. Antibacterial activity of the ZnO/GQD nanocomposites was evaluated with Escherichia coli within the context of minimum inhibitory concentration and the reduction of the number of bacterial colonies in a standard plate count method, in comparison to those with ZnO and GQD separately. It was found that the activity was markedly enhanced under UV photoirradiation as compared to that in ambient light. This was ascribed to the enhanced generation of reactive oxygen species under UV photoirradiation, with minor contributions from membrane damage, as manifested in electron paramagnetic resonance and fluorescence microscopic measurements. The results highlight the significance of functional nanocomposites based on semiconductor nanoparticles and graphene derivatives in the development of effective bactericidal agents.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA