Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Ecol Appl ; 30(6): e02130, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32227394

RESUMO

We used a recently published, open-access data set of U.S. streamwater nitrogen (N) and phosphorus (P) concentrations to test whether watershed land use differentially influences N and P concentrations, including the relative availability of dissolved and particulate nutrient fractions. We tested the hypothesis that N and P concentrations and molar ratios in streams and rivers of the United States reflect differing nutrient inputs from three dominant land-use types (agricultural, urban and forested). We also tested for differences between dissolved inorganic nutrients and suspended particulate nutrient fractions to infer sources and potential processing mechanisms across spatial and temporal scales. Observed total N and P concentrations often exceeded reported thresholds for structural changes to benthic algae (58, 57% of reported values, respectively), macroinvertebrates (39% for TN and TP), and fish (41, 37%, respectively). The majority of dissolved N and P concentrations exceeded threshold concentrations known to stimulate benthic algal growth (85, 87%, respectively), and organic matter breakdown rates (94, 58%, respectively). Concentrations of both N and P, and total and dissolved N:P ratios, were higher in streams and rivers with more agricultural and urban than forested land cover. The pattern of elevated nutrient concentrations with agricultural and urban land use was weaker for particulate fractions. The % N contained in particles decreased slightly with higher agriculture and urbanization, whereas % P in particles was unrelated to land use. Particulate N:P was relatively constant (interquartile range = 2-7) and independent of variation in DIN:DIP (interquartile range = 22-152). Dissolved, but not particulate, N:P ratios were temporally variable. Constant particulate N:P across steep DIN:DIP gradients in both space and time suggests that the stoichiometry of particulates across U.S. watersheds is most likely controlled either by external or by physicochemical instream factors, rather than by biological processing within streams. Our findings suggest that most U.S. streams and rivers have concentrations of N and P exceeding those considered protective of ecological integrity, retain dissolved N less efficiently than P, which is retained proportionally more in particles, and thus transport and export high N:P streamwater to downstream ecosystems on a continental scale.


Assuntos
Ecossistema , Rios , Agricultura , Animais , Nitrogênio/análise , Fósforo/análise , Estados Unidos
2.
J Anim Ecol ; 89(6): 1468-1481, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32124431

RESUMO

Human activities have dramatically altered global patterns of nitrogen (N) and phosphorus (P) availability. This pervasive nutrient pollution is changing basal resource quality in food webs, thereby affecting rates of biological productivity and the pathways of energy and material flow to higher trophic levels. Here, we investigate how the stoichiometric quality of basal resources modulates patterns of material flow through food webs by characterizing the effects of experimental N and P enrichment on the trophic basis of macroinvertebrate production and flows of dominant food resources to consumers in five detritus-based stream food webs. After a pre-treatment year, each stream received N and P at different concentrations for 2 years, resulting in a unique dissolved N:P ratio (target range from 128:1 to 2:1) for each stream. We combined estimates of secondary production and gut contents analysis to calculate rates of material flow from basal resources to macroinvertebrate consumers in all five streams, during all 3 years of study. Nutrient enrichment resulted in a 1.5× increase in basal resource flows to primary consumers, with the greatest increases from biofilms and wood. Flows of most basal resources were negatively related to resource C:P, indicating widespread P limitation in these detritus-based food webs. Nutrient enrichment resulted in a greater proportion of leaf litter, the dominant resource flow-pathway, being consumed by macroinvertebrates, with that proportion increasing with decreasing leaf litter C:P. However, the increase in efficiency with which basal resources were channelled into metazoan food webs was not propagated to macroinvertebrate predators, as flows of prey did not systematically increase following enrichment and were unrelated to basal resource flows. This study suggests that ongoing global increases in N and P supply will increase organic matter flows to metazoan food webs in detritus-based ecosystems by reducing stoichiometric constraints at basal trophic levels. However, the extent to which those flows are propagated to the highest trophic levels likely depends on responses of individual prey taxa and their relative susceptibility to predation.


Assuntos
Cadeia Alimentar , Rios , Animais , Ecossistema , Nitrogênio , Fósforo
3.
Oecologia ; 193(4): 981-993, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32740731

RESUMO

Diverse global change processes are reshaping the biogeochemistry of stream ecosystems. Nutrient enrichment is a common stressor that can modify flows of biologically important elements such as carbon (C), nitrogen (N), and phosphorus (P) through stream foodwebs by altering the stoichiometric composition of stream organisms. However, enrichment effects on concentrations of other important essential and trace elements in stream taxa are less understood. We investigated shifts in macroinvertebrate ionomes in response to changes in coarse benthic organic matter (CBOM) stoichiometry following N and P enrichment of five detritus-based headwater streams. Concentrations of most elements (17/19) differed among three insect genera (Maccaffertium sp., Pycnopsyche spp., and Tallaperla spp.) prior to enrichment. Genus-specific changes in the body content of: P, magnesium, and sodium (Na) in Tallaperla; P, Na, and cadmium in Pycnopsyche; and P in Maccaffertium were also found across CBOM N:P gradients. These elements increased in Tallaperla but decreased in the other two taxa due to growth dilution at larger body sizes. Multivariate elemental differences were found across all taxa, and ionome-wide shifts with dietary N and P enrichment were also observed in Tallaperla and Pycnopsyche. Our results show that macroinvertebrates exhibit distinct differences in elemental composition beyond C, N, and P and that the ionomic composition of common stream taxa can vary with body size and N and P enrichment. Thus, bottom-up changes in N and P supplies could potentially influence the cycling of lesser studied biologically essential elements in aquatic environments by altering their relative proportions in animal tissues.


Assuntos
Ecossistema , Rios , Animais , Carbono , Invertebrados , Nitrogênio , Fósforo
4.
Ecology ; 99(2): 347-359, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29266195

RESUMO

Ecological stoichiometry theory (EST) is a key framework for predicting how variation in N:P supply ratios influences biological processes, at molecular to ecosystem scales, by altering the availability of C, N, and P relative to organismal requirements. We tested EST predictions by fertilizing five forest streams at different dissolved molar N:P ratios (2, 8, 16, 32, 128) for two years and tracking responses of macroinvertebrate consumers to the resulting steep experimental gradient in basal resource stoichiometry (leaf litter %N, %P, and N:P). Nitrogen and P content of leaf litter, the dominant basal resource, increased in all five streams following enrichment, with steepest responses in litter %P and N:P ratio. Additionally, increases in primary consumer biomass and production occurred in all five streams following N and P enrichment (averages across all streams: biomass by 1.2×, production by 1.6×). Patterns of both biomass and production were best predicted by leaf litter N:P and %P and were unrelated to leaf litter %N. Primary consumer production increased most in streams where decreases in leaf litter N:P were largest. Macroinvertebrate predator biomass and production were also strongly positively related to litter %P, providing robust experimental evidence for the primacy of P limitation at multiple trophic levels in these ecosystems. However, production of predatory macroinvertebrates was not related directly to primary consumer production, suggesting the importance of additional controls for macroinvertebrates at upper trophic positions. Our results reveal potential drivers of animal production in detritus-based ecosystems, including the relative importance of resource quality vs. quantity. Our study also sheds light on the more general impacts of variation in N:P supply ratio on nutrient-poor ecosystems, providing strong empirical support for predictions that nutrient enrichment increases food web productivity whenever large elemental imbalances between basal resources and consumer demand are reduced.


Assuntos
Ecossistema , Rios , Animais , Biomassa , Cadeia Alimentar , Nitrogênio
5.
Ecology ; 99(8): 1792-1801, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29992554

RESUMO

Humans are altering nutrient dynamics through myriad pathways globally. Concurrent with the addition of nutrients via municipal, industrial, and agricultural sources, widespread consumer exploitation is changing consumer-mediated nutrient dynamics drastically. Thus, altered nutrient dynamics can occur through changes in the supply of multiple nutrients, as well as through changes in the sources of these nutrients. Seagrass ecosystems are heavily impacted by human activities, with highly altered nutrient dynamics from multiple causes. We simulate scenarios of altered nutrient supply and ratios, nitrogen:phosphorus (N:P), from two nutrient sources in seagrass ecosystems: anthropogenic fertilizer and fish excretion. In doing so we tested expectations rooted in ecological theory that suggest the importance of resource dynamics for predicting primary producer dynamics. Ecosystem functions were strongly altered by artificial fertilizer (e.g., seagrass growth increased by as much as 140%), whereas plant/algae community structure was most affected by fish-mediated nutrients or the interaction of both treatments (e.g., evenness increased by ~140% under conditions of low fish nutrients and high anthropogenic nutrients). Interactions between the nutrient sources were found for only two of six response variables, and the ratio of nutrient supply was the best predictor for only one response. These findings show that seagrass structure and function are well predicted by supply of a single nutrient (either N or P). Importantly, no single nutrient best explained the majority of responses-measures of community structure were best explained by the primary limiting nutrient to this system (P), whereas measures of growth and density of the dominant producer in the system were best explained by N. Thus, while our findings support aspects of theoretical expectations, the complexity of producer community responses belies broad generalities, underscoring the need to manage for multiple simultaneous nutrients in these imperiled coastal ecosystems.


Assuntos
Ecossistema , Nutrientes , Animais , Peixes , Nitrogênio , Fósforo
6.
Glob Chang Biol ; 24(1): e233-e247, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28902445

RESUMO

Rising temperatures and nutrient enrichment are co-occurring global-change drivers that stimulate microbial respiration of detrital carbon, but nutrient effects on the temperature dependence of respiration in aquatic ecosystems remain uncertain. We measured respiration rates associated with leaf litter, wood, and fine benthic organic matter (FBOM) across seasonal temperature gradients before (PRE) and after (ENR1, ENR2) experimental nutrient (nitrogen [N] and phosphorus [P]) additions to five forest streams. Nitrogen and phosphorus were added at different N:P ratios using increasing concentrations of N (~80-650 µg/L) and corresponding decreasing concentrations of P (~90-11 µg/L). We assessed the temperature dependence, and microbial (i.e., fungal) drivers of detrital mass-specific respiration rates using the metabolic theory of ecology, before vs. after nutrient enrichment, and across N and P concentrations. Detrital mass-specific respiration rates increased with temperature, exhibiting comparable activation energies (E, electronvolts [eV]) for all substrates (FBOM E = 0.43 [95% CI = 0.18-0.69] eV, leaf litter E = 0.30 [95% CI = 0.072-0.54] eV, wood E = 0.41 [95% CI = 0.18-0.64] eV) close to predicted MTE values. There was evidence that temperature-driven increased respiration occurred via increased fungal biomass (wood) or increased fungal biomass-specific respiration (leaf litter). Respiration rates increased under nutrient-enriched conditions on leaves (1.32×) and wood (1.38×), but not FBOM. Respiration rates responded weakly to gradients in N or P concentrations, except for positive effects of P on wood respiration. The temperature dependence of respiration was comparable among years and across N or P concentration for all substrates. Responses of leaf litter and wood respiration to temperature and the combined effects of N and P were similar in magnitude. Our data suggest that the temperature dependence of stream microbial respiration is unchanged by nutrient enrichment, and that increased temperature and N + P availability have additive and comparable effects on microbial respiration rates.


Assuntos
Bactérias/metabolismo , Fungos/metabolismo , Consumo de Oxigênio/fisiologia , Rios/microbiologia , Biomassa , Carbono/metabolismo , Nitrogênio/metabolismo , Fósforo/metabolismo , Temperatura
7.
Proc Natl Acad Sci U S A ; 112(20): E2640-7, 2015 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-25877152

RESUMO

Reconciling the degree to which ecological processes are generalizable among taxa and ecosystems, or contingent on the identity of interacting species, remains a critical challenge in ecology. Ecological stoichiometry (EST) and metabolic theory of ecology (MTE) are theoretical approaches used to evaluate how consumers mediate nutrient dynamics and energy flow through ecosystems. Recent theoretical work has explored the utility of these theories, but empirical tests in species-rich ecological communities remain scarce. Here we use an unprecedented dataset collected from fishes and dominant invertebrates (n = 900) in a diverse subtropical coastal marine community (50 families, 72 genera, 102 species; body mass range: 0.04-2,597 g) to test the utility of EST and MTE in predicting excretion rates of nitrogen (E(N)), phosphorus (E(P)), and their ratio (E(NP)). Body mass explained a large amount of the variation in EN and EP but not E(NP). Strong evidence in support of the MTE 3/4 allometric scaling coefficient was found for E(P), and for E(N) only after accounting for variation in excretion rates among taxa. In all cases, including taxonomy in models substantially improved model performance, highlighting the importance of species identity for this ecosystem function. Body nutrient content and trophic position explained little of the variation in E(N), E(P), or E(NP), indicating limited applicability of basic predictors of EST. These results highlight the overriding importance of MTE for predicting nutrient flow through organisms, but emphasize that these relationships still fall short of explaining the unique effects certain species can have on ecological processes.


Assuntos
Defecação/fisiologia , Peixes/fisiologia , Cadeia Alimentar , Invertebrados/fisiologia , Redes e Vias Metabólicas/fisiologia , Modelos Biológicos , Animais , Peso Corporal , Peixes/metabolismo , Invertebrados/metabolismo , Modelos Lineares , Biologia Marinha/métodos , Especificidade da Espécie
8.
Glob Chang Biol ; 23(8): 3064-3075, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28039909

RESUMO

Streams and rivers are important conduits of terrestrially derived carbon (C) to atmospheric and marine reservoirs. Leaf litter breakdown rates are expected to increase as water temperatures rise in response to climate change. The magnitude of increase in breakdown rates is uncertain, given differences in litter quality and microbial and detritivore community responses to temperature, factors that can influence the apparent temperature sensitivity of breakdown and the relative proportion of C lost to the atmosphere vs. stored or transported downstream. Here, we synthesized 1025 records of litter breakdown in streams and rivers to quantify its temperature sensitivity, as measured by the activation energy (Ea , in eV). Temperature sensitivity of litter breakdown varied among twelve plant genera for which Ea could be calculated. Higher values of Ea were correlated with lower-quality litter, but these correlations were influenced by a single, N-fixing genus (Alnus). Ea values converged when genera were classified into three breakdown rate categories, potentially due to continual water availability in streams and rivers modulating the influence of leaf chemistry on breakdown. Across all data representing 85 plant genera, the Ea was 0.34 ± 0.04 eV, or approximately half the value (0.65 eV) predicted by metabolic theory. Our results indicate that average breakdown rates may increase by 5-21% with a 1-4 °C rise in water temperature, rather than a 10-45% increase expected, according to metabolic theory. Differential warming of tropical and temperate biomes could result in a similar proportional increase in breakdown rates, despite variation in Ea values for these regions (0.75 ± 0.13 eV and 0.27 ± 0.05 eV, respectively). The relative proportions of gaseous C loss and organic matter transport downstream should not change with rising temperature given that Ea values for breakdown mediated by microbes alone and microbes plus detritivores were similar at the global scale.


Assuntos
Carbono/química , Folhas de Planta , Temperatura , Alnus , Mudança Climática , Ecossistema , Rios
9.
Ecol Appl ; 26(6): 1745-1757, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27755690

RESUMO

Nutrient enrichment of detritus-based streams increases detrital resource quality for consumers and stimulates breakdown rates of particulate organic carbon (C). The relative importance of dissolved inorganic nitrogen (N) vs. phosphorus (P) for detrital quality and their effects on microbial- vs. detritivore-mediated detrital breakdown are poorly understood. We tested effects of experimental N and P additions on detrital stoichiometry (C:N, C:P) and total and microbial breakdown (i.e., with and without detritivorous shredders, respectively) of five detritus types (four leaf litter species and wood) with different initial C : nutrient content. We enriched five headwater streams continuously for two years at different relative availabilities of N and P and compared breakdown rates and detrital stoichiometry to pretreatment conditions. Total breakdown rates increased with nutrient enrichment and were predicted by altered detrital stoichiometry. Streamwater N and P, fungal biomass, and their interactions affected stoichiometry of detritus. Streamwater N and P decreased detrital C:N, whereas streamwater P had stronger negative effects on detrital C:P. Nutrient addition and fungal biomass reduced C:N by 70% and C:P by 83% on average after conditioning, compared to only 26% for C:N and 10% for C:P under pretreatment conditions. Detritus with lowest initial nutrient content changed the most and had greatest increases in total breakdown rates. Detrital stoichiometry was reduced and differences among detritus types were homogenized by nutrient enrichment. With enrichment, detrital nutrient content approached detritivore nutritional requirements and stimulated greater detritivore vs. microbial litter breakdown. We used breakpoint regression to estimate values of detrital stoichiometry that can potentially be used to indicate elevated breakdown rates. Breakpoint ratios for total breakdown were 41 (C:N) and 1518 (C:P), coinciding with total breakdown rates that were ~1.9 times higher when C:N or C:P fell below these breakpoints. Microbial and shredder-mediated breakdown rates both increased when C:N and C:P were reduced, suggesting that detrital stoichiometry is useful for predicting litter breakdown dominated by either microbial or shredder activity. Our results show strong effects of nutrient enrichment on detrital stoichiometry and offer a robust link between a potential holistic nutrient loading metric (decreased and homogenized detrital stoichiometry) and increased C loss from stream ecosystems.


Assuntos
Biodegradação Ambiental , Carbono/metabolismo , Ecossistema , Rios , Animais , Bactérias/metabolismo , Fungos/metabolismo , Invertebrados/metabolismo , Folhas de Planta/química , Folhas de Planta/metabolismo
10.
Ecology ; 96(11): 2994-3004, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27070018

RESUMO

Nutrient-driven perturbations to the resource base of food webs are predicted to attenuate with trophic distance, so it is unclear whether higher-level consumers will generally respond to anthropogenic nutrient loading. Few studies have tested whether nutrient (specifically, nitrogen [N] and phosphorus [P]) enrichment of aquatic ecosystems propagates through multiple trophic levels to affect predators, or whether N vs. P is relatively more important in driving effects on food webs. We conducted two-year whole-stream N and P additions to five streams to generate gradients in N and P concentration and N:P ratio (target N:P = 2, 8, 16, 32, 128). Larval salamanders are vertebrate predators of primary and secondary macroinvertebrate consumers in many heterotrophic headwater streams in which the basal resources are detritus and associated microorganisms. We determined the effects of N and P on the growth rates of caged and free-roaming larval Desmognathus quadramaculatus and the average body size of larval Eurycea wilderae. Growth rates and average body size increased by up to 40% and 60%, respectively, with P concentration and were negatively related to N:P ratio. These findings were consistent across both species of salamanders using different methodologies (cage vs. free-roaming) and at different temporal scales (3 months vs. 2 yr). Nitrogen concentration was not significantly related to increased growth rate or body size of the salamander species tested. Our findings suggest that salamander growth responds to the relaxation of ecosystem-level P limitation and that moderate P enrichment can have relatively large effects on vertebrate predators in detritus-based food webs.


Assuntos
Fósforo/química , Rios/química , Urodelos/crescimento & desenvolvimento , Animais , Tamanho Corporal , Cadeia Alimentar , Invertebrados/fisiologia , Larva/fisiologia , Nitrogênio , Dinâmica Populacional , Especificidade da Espécie
11.
Ecology ; 96(8): 2214-24, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26405746

RESUMO

Nitrogen (N) and phosphorus (P) concentrations are elevated in many freshwater systems, stimulating breakdown rates of terrestrially derived plant litter; however, the relative importance of N and P in driving litter breakdown via microbial and detritivore processing are not fully understood. Here, we determined breakdown rates of two litter species, Acer rubrum (maple) and Rhododendron maximum (rhododendron), before (PRE) and during two years (YR1, YR2) of experimental N and P additions to five streams, and quantified the relative importance of hypothesized factors contributing to breakdown. Treatment streams received a gradient of P additions (low to high soluble reactive phosphorus [SRP]; ~10-85 µg/L) crossed with a gradient of N additions (high to low dissolved inorganic nitrogen [DIN]; ~472-96 µg/L) to achieve target molar N:P ratios ranging from 128 to 2. Litter breakdown rates increased above pre-treatment levels by an average of 1.1-2.2x for maple, and 2.7-4.9x for rhododendron in YR1 and YR2. We used path analysis to compare fungal biomass, shredder biomass, litter stoichiometry (nutrient content as C:N or C:P), discharge, and streamwater temperature as predictors of breakdown rates and compared models containing streamwater N, P or N + P and litter C:N or C:P using model selection criteria. Litter breakdown rates were predicted equally with either streamwater N or P (R2 = 0.57). In models with N or P, fungal biomass, litter stoichiometry, discharge, and shredder biomass predicted breakdown rates; litter stoichiometry and fungal biomass were most important for model fit. However, N and P effects may have occurred via subtly different pathways. Litter N content increased with fungal biomass (N-driven effects) and litter P content increased with streamwater P availability (P-driven effects), presumably via P storage in fungal biomass. In either case, the effects of N and P through these pathways were associated with higher shredder biomass and breakdown rates. Our results suggest that N and P stimulate litter breakdown rates via mechanisms in which litter stoichiometry is an important nexus for associated microbial and detritivore effects.


Assuntos
Biodegradação Ambiental , Folhas de Planta , Rios/química , Animais , Biomassa , Ecossistema , Fungos/metabolismo , Invertebrados , Nitrogênio/química , North Carolina , Fósforo/química
12.
Ecol Appl ; 25(3): 856-65, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26214929

RESUMO

Particulate organic matter (POM) processing is an important driver of aquatic ecosystem productivity that is sensitive to nutrient enrichment and.drives ecosystem carbon (C) loss. Although studies of single concentrations of nitrogen (N) or phosphorus (P) have shown effects at relatively low concentrations, responses of litter breakdown rates along gradients of low-to-moderate N and P concentrations are needed to establish likely interdependent effects of dual N and P enrichment on baseline activity in stream ecosystems. We established 25 combinations of dissolved inorganic N (DIN; 55-545 µg/L) and soluble reactive P (SRP; 4-86 µg/L) concentrations with corresponding N:P molar ratios of 2-127 in experimental stream channels. We excluded macroinvertebrates, focusing on microbially driven breakdown of maple (Acer rubrum L.) and rhododendron (Rhododendron maximum L.) leaf litter. Breakdown rates, k, per day (d-1) and per degree-day (dd-l), increased by up to 6X for maple and 12× for rhododendron over our N and P enrichment gradient compared to rates at low ambient N and P concentrations. The best models of k (d- and dd-1) included litter species identity and N and P concentrations; there was evidence for both additive and interactive effects of N and P. Models explaining variation in k dd-1 were supported by N and P for both maple and rhododendron (R =0.67 and 0.33, respectively). Residuals in the relationship between k dd-1 and N concentration were largely explained by P, but residuals for k dd-1 and P. concentration were less adequately explained by N. Breakdown rates were more closely related to nutrient concentrations than variables associated with measurements of two mechanistic parameters associated with C loss (fungal biomass and microbial respiration rate). We also determined the effects of nutrient addition on litter C: nutrient stoichiometry and found reductions in litter C:N and C:P along our experimental nutrient gradient. Our results indicate that microbially driven litter processing rates increase across low-to-moderate nutrient gradients that are now common throughout human-modified landscapes.


Assuntos
Bactérias/metabolismo , Fungos/metabolismo , Nitrogênio/metabolismo , Fósforo/metabolismo , Animais , Nitrogênio/química , Consumo de Oxigênio , Fósforo/química , Fatores de Tempo
13.
Glob Chang Biol ; 20(8): 2459-72, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24692262

RESUMO

Corals thrive in low nutrient environments and the conservation of these globally imperiled ecosystems is largely dependent on mitigating the effects of anthropogenic nutrient enrichment. However, to better understand the implications of anthropogenic nutrients requires a heightened understanding of baseline nutrient dynamics within these ecosystems. Here, we provide a novel perspective on coral reef nutrient dynamics by examining the role of fish communities in the supply and storage of nitrogen (N) and phosphorus (P). We quantified fish-mediated nutrient storage and supply for 144 species and modeled these data onto 172 fish communities (71 729 individual fish), in four types of coral reefs, as well as seagrass and mangrove ecosystems, throughout the Northern Antilles. Fish communities supplied and stored large quantities of nutrients, with rates varying among ecosystem types. The size structure and diversity of the fish communities best predicted N and P supply and storage and N : P supply, suggesting that alterations to fish communities (e.g., overfishing) will have important implications for nutrient dynamics in these systems. The stoichiometric ratio (N : P) for storage in fish mass (~8 : 1) and supply (~20 : 1) was notably consistent across the four coral reef types (but not seagrass or mangrove ecosystems). Published nutrient enrichment studies on corals show that deviations from this N : P supply ratio may be associated with poor coral fitness, providing qualitative support for the hypothesis that corals and their symbionts may be adapted to specific ratios of nutrient supply. Consumer nutrient stoichiometry provides a baseline from which to better understand nutrient dynamics in coral reef and other coastal ecosystems, information that is greatly needed if we are to implement more effective measures to ensure the future health of the world's oceans.


Assuntos
Recifes de Corais , Peixes , Nitrogênio/análise , Fósforo/análise , Animais , Teorema de Bayes , Ecossistema , Metabolismo Energético , Modelos Lineares , Modelos Teóricos
14.
Proc Natl Acad Sci U S A ; 107(1): 121-6, 2010 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-20018677

RESUMO

Increased nutrient mobilization by human activities represents one of the greatest threats to global ecosystems, but its effects on ecosystem productivity can differ depending on food web structure. When this structure facilitates efficient energy transfers to higher trophic levels, evidence from previous large-scale enrichments suggests that nutrients can stimulate the production of multiple trophic levels. Here we report results from a 5-year continuous nutrient enrichment of a forested stream that increased primary consumer production, but not predator production. Because of strong positive correlations between predator and prey production (evidence of highly efficient trophic transfers) under reference conditions, we originally predicted that nutrient enrichment would stimulate energy flow to higher trophic levels. However, enrichment decoupled this strong positive correlation and produced a nonlinear relationship between predator and prey production. By increasing the dominance of large-bodied predator-resistant prey, nutrient enrichment truncated energy flow to predators and reduced food web efficiency. This unexpected decline in food web efficiency indicates that nutrient enrichment, a ubiquitous threat to aquatic ecosystems, may have unforeseen and unpredictable effects on ecosystem structure and productivity.


Assuntos
Comportamento Alimentar/fisiologia , Cadeia Alimentar , Alimentos , Comportamento Predatório/fisiologia , Animais , Biomassa , Ecossistema , Água Doce , Humanos , Rios , Urodelos
15.
FEMS Microbiol Ecol ; 99(3)2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36882207

RESUMO

Saprotrophic fungi play important roles in transformations of carbon (C), nitrogen (N), and phosphorus (P) in aquatic environments. However, it is unclear how warming will alter fungal cycling of C, N, and P. We conducted an experiment with four aquatic hyphomycetes (Articulospora tetracladia, Hydrocina chaetocladia, Flagellospora sp., and Aquanectria penicillioides), and an assemblage of the same taxa, to test how temperature alters C and nutrient use. Specifically, we evaluated biomass accrual, C:N, C:P, δ13C, and C use efficiency (CUE) over a 35-d experiment with temperatures ranging from 4ºC to 20ºC. Changes in biomass accrual and CUE were predominantly quadratic with peaks between 7ºC and 15ºC. The C:P of H. chaetocladia biomass increased 9× over the temperature gradient, though the C:P of other taxa was unaffected by temperature. Changes in C:N were relatively small across temperatures. Biomass δ13C of some taxa changed across temperatures, indicating differences in C isotope fractionation. Additionally, the 4-species assemblage differed from null expectations based on the monocultures in terms of biomass accrual, C:P, δ13C, and CUE, suggesting that interactions among taxa altered C and nutrient use. These results highlight that temperature and interspecific interactions among fungi can alter traits affecting C and nutrient cycling.


Assuntos
Carbono , Ecossistema , Biomassa , Temperatura , Nitrogênio , Fungos/genética , Folhas de Planta/microbiologia
16.
Ambio ; 52(9): 1475-1487, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37351775

RESUMO

The Clean Water Act (CWA) of 1972 regulates water quality in U.S. inland waters under a system of cooperative federalism in which states are delegated implementation and enforcement authority of CWA provisions by the U.S. Environmental Protection Agency. We leveraged heterogeneity in state implementation of the CWA to evaluate the efficacy of its nonpoint source provisions in reducing nutrient pollution, the leading cause of water quality impairment in U.S. inland waters. We used national survey data to estimate changes in nutrient concentrations over a decade and evaluated the effect of state-level policy implementation. We found no evidence to support an effect of (i) grant spending on nonpoint source pollution remediation, (ii) nutrient criteria development, or (iii) water quality monitoring intensity on 10-year trends in nutrient concentrations. These results suggest that the current federal policy paradigm for improving water quality is not creating desired outcomes.


Assuntos
Recuperação e Remediação Ambiental , Poluição Difusa , Estados Unidos , Qualidade da Água , United States Environmental Protection Agency , Monitoramento Ambiental , Poluição da Água/prevenção & controle
17.
Ecol Appl ; 21(2): 343-9, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21563567

RESUMO

We quantified how two human impacts (overfishing and habitat fragmentation) in nearshore marine ecosystems may affect ecosystem function by altering the role of fish as nutrient vectors. We empirically quantified size-specific excretion rates of one of the most abundant fishes (gray snapper, Lutjanus griseus) in The Bahamas and combined these with surveys of fish abundance to estimate population-level excretion rates. The study was conducted across gradients of two human disturbances: overfishing and ecosystem fragmentation (estuaries bisected by roads), to evaluate how each could result in reduced population-level nutrient cycling by consumers. Mean estimated N and P excretion rates for gray snapper populations were on average 456% and 541% higher, respectively, in unfished sites. Ecosystem fragmentation resulted in significant reductions of recycling rates by snapper, with degree of creek fragmentation explaining 86% and 72% of the variance in estimated excretion for dissolved N and P, respectively. Additionally, we used nutrient limitation assays and primary producer nutrient content to provide a simple example of how marine fishery declines may affect primary production. This study provides an initial step toward integrating marine fishery declines and consumer-driven nutrient recycling to more fully understand the implications of human impacts in marine ecosystems.


Assuntos
Ecossistema , Meio Ambiente , Monitoramento Ambiental , Pesqueiros , Atividades Humanas , Perciformes/fisiologia , Animais , Nitrogênio/química , Nitrogênio/metabolismo , Fósforo/química , Fósforo/metabolismo
18.
Oecologia ; 167(3): 821-34, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21647783

RESUMO

Because nutrient enrichment can increase ecosystem productivity, it may enhance resource flows to adjacent ecosystems as organisms cross ecosystem boundaries and subsidize predators in recipient ecosystems. Here, we quantified the biomass and abundance of aquatic emergence and terrestrial spiders in a reference and treatment stream that had been continuously enriched with nitrogen and phosphorus for 5 years. Because we previously showed that enrichment increased secondary production of stream consumers, we predicted that aquatic emergence flux would be higher in the treatment stream, subsequently increasing the biomass and abundance of terrestrial spiders. Those increases were predicted to be greatest for spiders specializing on aquatic emergence subsidies (e.g., Tetragnathidae). By adding a (15)N stable isotope tracer to both streams, we also quantified nitrogen flow from the stream into the riparian community. Emergence biomass, but not abundance, was higher in the treatment stream. The average body size of emerging adult insects and the relative dominance of Trichoptera adults were also greater in the treatment stream. However, spider biomass did not differ between streams. Spiders also exhibited substantially lower reliance on aquatic emergence nitrogen in the treatment stream. This reduced reliance likely resulted from shifts in the body size distributions and community composition of insect emergence that may have altered predator consumption efficiency in the treatment stream. Despite nutrient enrichment approximately doubling stream productivity and associated cross-ecosystem resource flows, the response of terrestrial predators depended more on the resource subsidy's characteristics that affected the predator's ability to capitalize on such increases.


Assuntos
Ecossistema , Nitrogênio/metabolismo , Fósforo/metabolismo , Rios/química , Aranhas/fisiologia , Animais , Tamanho Corporal , Isótopos de Nitrogênio/metabolismo , Dinâmica Populacional , Comportamento Predatório/fisiologia , Aranhas/crescimento & desenvolvimento
19.
Ecology ; 102(3): e03279, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33368179

RESUMO

Tracking carbon (C) flow through ecosystems requires quantification of myriad biophysical processes, including C routing through microbial and metazoan food webs. Yet detailed organic matter budgets are rarely combined with simultaneous measurement of C flows supporting microbial and animal production. Here, we synthesize concurrent data sets on organic matter, microbes, and macroinvertebrates from two detritus-based stream ecosystems, one of which was subject to experimental nitrogen (N) and phosphorus (P) enrichment. Our synthesis provides new insights into C flow through forest stream ecosystems. Over 3 yr, the reference stream showed a striking balance of inputs and outputs, with a mean surplus of only 7 g C·m-2 ·yr-1 (~1% of annual inputs), presumably stored in sediments as fine particulate organic matter (FPOM). In contrast, N and P enrichment over 2 yr resulted in severe deficits of C (-576 g C·m-2 ·yr-1 or ~170% of annual inputs), a shortfall presumably met by stored C. Our data set provides an ecosystem-based estimate of the fate of forest litter C at ambient nutrient concentrations: 6.2% was leached as dissolved organic C, 40.6% and 8.5% flowed to litter-associated fungi and bacteria, respectively, 7.5% was consumed by macroinvertebrates, 1.8% was exported as coarse particles, and the remainder (35.4%) was presumably fragmented by biophysical processes. Our calculations also allowed an estimate of inputs into the heterogeneous FPOM pool, which is otherwise difficult to obtain. At naturally low nutrient concentrations, 50.7% was derived from fragmented litter, 39.1% from microbial biomass (mostly fungal), and 10.2% from macroinvertebrate egesta. Nutrient addition drove large changes in C fluxes in the experimental stream, especially in flows of leaf litter to fungi (×1.7 pretreatment) and macroinvertebrates (×2.7), and of FPOM to hydrologic export (×2.6). Our results underscore the key roles of both microbes and metazoans in controlling C flow through detritus-based ecosystems, as well as how release from persistent nutrient limitation may perturb steady-state conditions of C inputs vs. outputs. Our analysis also suggests areas for future research, including assessing the relative importance of stored vs. recycled C in fueling detrital food webs subject to altered nutrient regimes and other global-change drivers.


Assuntos
Carbono , Ecossistema , Animais , Cadeia Alimentar , Nitrogênio , Fósforo
20.
Environ Pollut ; 291: 118257, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34600064

RESUMO

Aquatic-terrestrial contaminant transport via emerging aquatic insects has been studied across contaminant classes and aquatic ecosystems, but few studies have quantified the magnitude of these insect-mediated contaminant fluxes, limiting our understanding of their drivers. Using a recent conceptual model, we identified watershed mining extent, settling ponds, and network position as potential drivers of selenium (Se) fluxes from a mountaintop coal mining-impacted river network. Mining extent drove insect Se concentration (p = 0.008, R2 = 0.406), but ponding and network position were the principal drivers of Se flux through their impact on insect production. Se fluxes were 18 times higher from ponded, mined tributaries than from unponded ones and were comparable to fluxes from larger, productive mainstem sites. Thus, contaminant fluxes were highest in the river mainstem or below ponds, indicating that without considering controls on insect production, contaminant fluxes and their associated risks for predators like birds and bats can be misestimated.


Assuntos
Minas de Carvão , Rios , Animais , Ecossistema , Insetos , Lagoas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA