Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
J Cardiothorac Vasc Anesth ; 38(2): 417-422, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38114369

RESUMO

OBJECTIVES: The IKORUS system (Vygon, Écouen, France) allows continuous monitoring of the urethral perfusion index (uPI) using a photoplethysmographic sensor mounted near the base of the balloon of a dedicated urinary catheter. We aimed to test the hypothesis that the uPI decreases during off-pump coronary artery bypass (OPCAB) surgery and to investigate the relationship between the uPI and macrocirculatory variables. DESIGN: Prospective observational study. SETTING: University Medical Center Hamburg-Eppendorf, Hamburg, Germany. PARTICIPANTS: Twenty patients having OPCAB surgery. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: The primary endpoint was changes in the uPI during OPCAB surgery. We additionally investigated associations between the uPI and cardiac output, mean arterial pressure, heart rate, and point-of-care variables. Twenty patients with 24,137 uPI measurements were included. Overall, there was a high interindividual variability in the uPI. Compared with the preparation phase (during which the median [interquartile range] uPI was 7.7 [5.6-12.0]), the uPI decreased by 14% (95% CI 13%-15%) during the bypass grafting phase, by 35% (95% CI 34%-36%) during the cardiac positioning phase, and by 7% (95% CI 6%-9%) during hemostasis. There was no clinically important association between uPI and either cardiac output, mean arterial pressure, or heart rate. CONCLUSIONS: The uPI decreases during OPCAB surgery, specifically during the cardiac positioning phase. There was no clinically important association between uPI and either cardiac output, mean arterial pressure, or heart rate. It, therefore, remains to be determined whether intraoperative uPI decreases are clinically important, reflect alterations in intra-abdominal tissue perfusion that are not reflected by systemic macrohemodynamics, and can help clinicians guide therapeutic interventions.


Assuntos
Ponte de Artéria Coronária sem Circulação Extracorpórea , Humanos , Pressão Arterial , Débito Cardíaco/fisiologia , Frequência Cardíaca/fisiologia , Índice de Perfusão , Estudos Prospectivos
2.
Stud Health Technol Inform ; 310: 33-37, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38269760

RESUMO

In digital healthcare, data heterogeneity is a reoccurring issue caused by proprietary source systems. It is often overcome by utilizing ETL processes resulting in data warehouses, which ensure common data models for interoperability. Unfortunately, the achieved interoperability is usually limited to an institutional level. The broad solution space to achieve interoperability with different health data standards is part of the problem, resulting in different standards used at various institutions. For cross-institutional use cases like federated feasibility queries, the issue of heterogeneity is reintroduced. This work showcases how the existing German infrastructure for federated feasibility queries based on Hl7 FHIR can be extended to support openEHR without further data transformation. By utilizing an intermediate query format that can be transferred to FHIR Search, CQL, and AQL.


Assuntos
Data Warehousing , Instalações de Saúde , Humanos , Estudos de Viabilidade
3.
JMIR Med Inform ; 12: e57005, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39042420

RESUMO

BACKGROUND: Cross-institutional interoperability between health care providers remains a recurring challenge worldwide. The German Medical Informatics Initiative, a collaboration of 37 university hospitals in Germany, aims to enable interoperability between partner sites by defining Fast Healthcare Interoperability Resources (FHIR) profiles for the cross-institutional exchange of health care data, the Core Data Set (CDS). The current CDS and its extension modules define elements representing patients' health care records. All university hospitals in Germany have made significant progress in providing routine data in a standardized format based on the CDS. In addition, the central research platform for health, the German Portal for Medical Research Data feasibility tool, allows medical researchers to query the available CDS data items across many participating hospitals. OBJECTIVE: In this study, we aimed to evaluate a novel approach of combining the current top-down generated FHIR profiles with the bottom-up generated knowledge gained by the analysis of respective instance data. This allowed us to derive options for iteratively refining FHIR profiles using the information obtained from a discrepancy analysis. METHODS: We developed an FHIR validation pipeline and opted to derive more restrictive profiles from the original CDS profiles. This decision was driven by the need to align more closely with the specific assumptions and requirements of the central feasibility platform's search ontology. While the original CDS profiles offer a generic framework adaptable for a broad spectrum of medical informatics use cases, they lack the specificity to model the nuanced criteria essential for medical researchers. A key example of this is the necessity to represent specific laboratory codings and values interdependencies accurately. The validation results allow us to identify discrepancies between the instance data at the clinical sites and the profiles specified by the feasibility platform and addressed in the future. RESULTS: A total of 20 university hospitals participated in this study. Historical factors, lack of harmonization, a wide range of source systems, and case sensitivity of coding are some of the causes for the discrepancies identified. While in our case study, Conditions, Procedures, and Medications have a high degree of uniformity in the coding of instance data due to legislative requirements for billing in Germany, we found that laboratory values pose a significant data harmonization challenge due to their interdependency between coding and value. CONCLUSIONS: While the CDS achieves interoperability, different challenges for federated data access arise, requiring more specificity in the profiles to make assumptions on the instance data. We further argue that further harmonization of the instance data can significantly lower required retrospective harmonization efforts. We recognize that discrepancies cannot be resolved solely at the clinical site; therefore, our findings have a wide range of implications and will require action on multiple levels and by various stakeholders.

4.
JMIR Med Inform ; 12: e58541, 2024 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-39401125

RESUMO

Background: To advance research with clinical data, it is essential to make access to the available data as fast and easy as possible for researchers, which is especially challenging for data from different source systems within and across institutions. Over the years, many research repositories and data standards have been created. One of these is the Fast Healthcare Interoperability Resources (FHIR) standard, used by the German Medical Informatics Initiative (MII) to harmonize and standardize data across university hospitals in Germany. One of the first steps to make these data available is to allow researchers to create feasibility queries to determine the data availability for a specific research question. Given the heterogeneity of different query languages to access different data across and even within standards such as FHIR (eg, CQL and FHIR Search), creating an intermediate query syntax for feasibility queries reduces the complexity of query translation and improves interoperability across different research repositories and query languages. Objective: This study describes the creation and implementation of an intermediate query syntax for feasibility queries and how it integrates into the federated German health research portal (Forschungsdatenportal Gesundheit) and the MII. Methods: We analyzed the requirements for feasibility queries and the feasibility tools that are currently available in research repositories. Based on this analysis, we developed an intermediate query syntax that can be easily translated into different research repository-specific query languages. Results: The resulting Clinical Cohort Definition Language (CCDL) for feasibility queries combines inclusion criteria in a conjunctive normal form and exclusion criteria in a disjunctive normal form, allowing for additional filters like time or numerical restrictions. The inclusion and exclusion results are combined via an expression to specify feasibility queries. We defined a JSON schema for the CCDL, generated an ontology, and demonstrated the use and translatability of the CCDL across multiple studies and real-world use cases. Conclusions: We developed and evaluated a structured query syntax for feasibility queries and demonstrated its use in a real-world example as part of a research platform across 39 German university hospitals.


Assuntos
Estudos de Viabilidade , Alemanha , Humanos , Interoperabilidade da Informação em Saúde , Armazenamento e Recuperação da Informação/métodos
5.
JMIR Hum Factors ; 10: e43782, 2023 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-37074765

RESUMO

BACKGROUND: The Aligning Biobanking and Data Integration Centers Efficiently project aims to harmonize technologies and governance structures of German university hospitals and their biobanks to facilitate searching for patient data and biospecimens. The central element will be a feasibility tool for researchers to query the availability of samples and data to determine the feasibility of their study project. OBJECTIVE: The objectives of the study were as follows: an evaluation of the overall user interface usability of the feasibility tool, the identification of critical usability issues, comprehensibility of the underlying ontology operability, and analysis of user feedback on additional functionalities. From these, recommendations for quality-of-use optimization, focusing on more intuitive usability, were derived. METHODS: To achieve the study goal, an exploratory usability test consisting of 2 main parts was conducted. In the first part, the thinking aloud method (test participants express their thoughts aloud throughout their use of the tool) was complemented by a quantitative questionnaire. In the second part, the interview method was combined with supplementary mock-ups to collect users' opinions on possible additional features. RESULTS: The study cohort rated global usability of the feasibility tool based on the System Usability Scale with a good score of 81.25. The tasks assigned posed certain challenges. No participant was able to solve all tasks correctly. A detailed analysis showed that this was mostly because of minor issues. This impression was confirmed by the recorded statements, which described the tool as intuitive and user friendly. The feedback also provided useful insights regarding which critical usability problems occur and need to be addressed promptly. CONCLUSIONS: The findings indicate that the prototype of the Aligning Biobanking and Data Integration Centers Efficiently feasibility tool is headed in the right direction. Nevertheless, we see potential for optimization primarily in the display of the search functions, the unambiguous distinguishability of criteria, and the visibility of their associated classification system. Overall, it can be stated that the combination of different tools used to evaluate the feasibility tool provided a comprehensive picture of its usability.

6.
Stud Health Technol Inform ; 302: 307-311, 2023 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-37203668

RESUMO

Harmonizing medical data sharing frameworks is challenging. Data collection and formats follow local solutions in individual hospitals; thus, interoperability is not guaranteed. The German Medical Informatics Initiative (MII) aims to provide a Germany-wide, federated, large-scale data sharing network. In the last five years, numerous efforts have been successfully completed to implement the regulatory framework and software components for securely interacting with decentralized and centralized data sharing processes. 31 German university hospitals have today established local data integration centers that are connected to the central German Portal for Medical Research Data (FDPG). Here, we present milestones and associated major achievements of various MII working groups and subprojects which led to the current status. Further, we describe major obstacles and the lessons learned during its routine application in the last six months.


Assuntos
Pesquisa Biomédica , Informática Médica , Humanos , Disseminação de Informação , Software , Hospitais Universitários
7.
Stud Health Technol Inform ; 307: 78-85, 2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37697840

RESUMO

INTRODUCTION: In the last decade numerous real-world data networks have been established in order to leverage the value of data from electronic health records for medical research. In Germany, a nation-wide network based on electronic health record data from all German university hospitals has been established within the Medical Informatics Initiative (MII) and recently opened for researcherst' access through the German Portal for Medical Research Data (FDPG). In Bavaria, the six university hospitals have joined forces within the Bavarian Cancer Research Center (BZKF). The oncology departments aim at establishing a federated observational research network based on the framework of the MII/FDPG and extending it with a clear focus on oncological clinical data, imaging data and molecular high throughput analysis data. METHODS: We describe necessary adaptions and extensions of existing MII components with the goal of establishing a Bavarian oncology real world data research platform with its first use case of performing federated feasibility queries on clinical oncology data. RESULTS: We share insights from developing a feasibility platform prototype and presenting it to end users. Our main discovery was that oncological data is characterized by a higher degree of interdependence and complexity compared to the MII core dataset that is already integrated into the FDPG. DISCUSSION: The significance of our work lies in the requirements we formulated for extending already existing MII components to match oncology specific data and to meet oncology researchers needs while simultaneously transferring back our results and experiences into further developments within the MII.


Assuntos
Pesquisa Biomédica , Oncologia , Humanos , Registros Eletrônicos de Saúde , Alemanha , Instalações de Saúde
8.
Stud Health Technol Inform ; 294: 362-366, 2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35612097

RESUMO

While HL7 FHIR and its terminology package have seen a rapid uptake by the research community, in no small part due to the wide availability of tooling and resources, there are some areas where tool availability is still lacking. In particular, the comparison of terminological resources, which supports the work of terminologists and implementers alike, has not yet been sufficiently addressed. Hence, we present TerminoDiff, an application to semantically compare FHIR R4 CodeSystem resources. Our tool considers differences across all levels required, i.e. metadata and concept differences, as well as differences in the edge graph, and surfaces them in a visually digestible fashion.


Assuntos
Registros Eletrônicos de Saúde , Semântica , Atenção à Saúde , Embalagem de Medicamentos , Nível Sete de Saúde , Metadados
9.
JMIR Med Inform ; 10(4): e35789, 2022 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-35380548

RESUMO

BACKGROUND: The COVID-19 pandemic highlighted the importance of making research data from all German hospitals available to scientists to respond to current and future pandemics promptly. The heterogeneous data originating from proprietary systems at hospitals' sites must be harmonized and accessible. The German Corona Consensus Dataset (GECCO) specifies how data for COVID-19 patients will be standardized in Fast Healthcare Interoperability Resources (FHIR) profiles across German hospitals. However, given the complexity of the FHIR standard, the data harmonization is not sufficient to make the data accessible. A simplified visual representation is needed to reduce the technical burden, while allowing feasibility queries. OBJECTIVE: This study investigates how a search ontology can be automatically generated using FHIR profiles and a terminology server. Furthermore, it describes how this ontology can be used in a user interface (UI) and how a mapping and a terminology tree created together with the ontology can translate user input into FHIR queries. METHODS: We used the FHIR profiles from the GECCO data set combined with a terminology server to generate an ontology and the required mapping files for the translation. We analyzed the profiles and identified search criteria for the visual representation. In this process, we reduced the complex profiles to code value pairs for improved usability. We enriched our ontology with the necessary information to display it in a UI. We also developed an intermediate query language to transform the queries from the UI to federated FHIR requests. Separation of concerns resulted in discrepancies between the criteria used in the intermediate query format and the target query language. Therefore, a mapping was created to reintroduce all information relevant for creating the query in its target language. Further, we generated a tree representation of the ontology hierarchy, which allows resolving child concepts in the process. RESULTS: In the scope of this project, 82 (99%) of 83 elements defined in the GECCO profile were successfully implemented. We verified our solution based on an independently developed test patient. A discrepancy between the test data and the criteria was found in 6 cases due to different versions used to generate the test data and the UI profiles, the support for specific code systems, and the evaluation of postcoordinated Systematized Nomenclature of Medicine (SNOMED) codes. Our results highlight the need for governance mechanisms for version changes, concept mapping between values from different code systems encoding the same concept, and support for different unit dimensions. CONCLUSIONS: We developed an automatic process to generate ontology and mapping files for FHIR-formatted data. Our tests found that this process works for most of our chosen FHIR profile criteria. The process established here works directly with FHIR profiles and a terminology server, making it extendable to other FHIR profiles and demonstrating that automatic ontology generation on FHIR profiles is feasible.

10.
JMIR Med Inform ; 10(5): e36709, 2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35486893

RESUMO

BACKGROUND: An essential step in any medical research project after identifying the research question is to determine if there are sufficient patients available for a study and where to find them. Pursuing digital feasibility queries on available patient data registries has proven to be an excellent way of reusing existing real-world data sources. To support multicentric research, these feasibility queries should be designed and implemented to run across multiple sites and securely access local data. Working across hospitals usually involves working with different data formats and vocabularies. Recently, the Fast Healthcare Interoperability Resources (FHIR) standard was developed by Health Level Seven to address this concern and describe patient data in a standardized format. The Medical Informatics Initiative in Germany has committed to this standard and created data integration centers, which convert existing data into the FHIR format at each hospital. This partially solves the interoperability problem; however, a distributed feasibility query platform for the FHIR standard is still missing. OBJECTIVE: This study described the design and implementation of the components involved in creating a cross-hospital feasibility query platform for researchers based on FHIR resources. This effort was part of a large COVID-19 data exchange platform and was designed to be scalable for a broad range of patient data. METHODS: We analyzed and designed the abstract components necessary for a distributed feasibility query. This included a user interface for creating the query, backend with an ontology and terminology service, middleware for query distribution, and FHIR feasibility query execution service. RESULTS: We implemented the components described in the Methods section. The resulting solution was distributed to 33 German university hospitals. The functionality of the comprehensive network infrastructure was demonstrated using a test data set based on the German Corona Consensus Data Set. A performance test using specifically created synthetic data revealed the applicability of our solution to data sets containing millions of FHIR resources. The solution can be easily deployed across hospitals and supports feasibility queries, combining multiple inclusion and exclusion criteria using standard Health Level Seven query languages such as Clinical Quality Language and FHIR Search. Developing a platform based on multiple microservices allowed us to create an extendable platform and support multiple Health Level Seven query languages and middleware components to allow integration with future directions of the Medical Informatics Initiative. CONCLUSIONS: We designed and implemented a feasibility platform for distributed feasibility queries, which works directly on FHIR-formatted data and distributed it across 33 university hospitals in Germany. We showed that developing a feasibility platform directly on the FHIR standard is feasible.

11.
Int J Hyg Environ Health ; 240: 113928, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35093719

RESUMO

We describe two outbreaks of SARS-CoV-2 in daycare centers in the metropolitan area of Hamburg, Germany. The outbreaks occurred in rapid chronological succession, in neighborhoods with a very similar sociodemographic structure, thus allowing for cross-comparison of these events. We combined classical and molecular epidemiologic investigation methods to study infection entry, spread within the facilities, and subsequent transmission of infections to households. Epidemiologic and molecular evidence suggests a superspreading event with a non-variant of concern (non-VOC) SARS CoV-2 strain at the root of the first outbreak. The second outbreak involved two childcare facilities experiencing infection activity with the variant of concern (VOC) B.1.1.7 (Alpha). We show that the index cases in all outbreaks had been childcare workers, and that children contributed substantially to secondary transmission of SARS-CoV-2 infection from childcare facilities to households. The frequency of secondary transmissions in households originating from B.1.1.7-infected children was increased compared to children with non-VOC infections. Self-reported symptoms, particularly cough and rhinitis, occurred more frequently in B.1.1.7-infected children. Especially in light of the rapidly spreading VOC B.1.617.2 (Delta), our data underline the notion that rigorous SARS-CoV-2 testing in combination with screening of contacts regardless of symptoms is an important measure to prevent SARS-CoV-2 infection of unvaccinated individuals in daycare centers and associated households.


Assuntos
COVID-19 , Creches , SARS-CoV-2 , COVID-19/diagnóstico , COVID-19/virologia , Teste para COVID-19 , Criança , Surtos de Doenças , Alemanha/epidemiologia , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA