Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Dev Dyn ; 251(6): 988-1003, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-33797128

RESUMO

BACKGROUND: Efficient wound healing or pathogen clearance both rely on balanced inflammatory responses. Inflammation is essential for effective innate immune-cell recruitment; however, excessive inflammation will result in local tissue destruction, pathogen egress, and ineffective pathogen clearance. Sterile and nonsterile inflammation operate with competing functional priorities but share common receptors and overlapping signal transduction pathways. In regenerative organisms such as the salamander, whole limbs can be replaced after amputation while exposed to a nonsterile environment. In mammals, exposure to sterile-injury Damage Associated Molecular Patterns (DAMPS) alters innate immune-cell responsiveness to secondary Pathogen Associated Molecular Pattern (PAMP) exposure. RESULTS: Using new phospho-flow cytometry techniques to measure signaling in individual cell subsets we compared mouse to salamander inflammation. These studies demonstrated evolutionarily conserved responses to PAMP ligands through toll-like receptors (TLRs) but identified key differences in response to DAMP ligands. Co-exposure of macrophages to DAMPs/PAMPs suppressed MAPK signaling in mammals, but not salamanders, which activate sustained MAPK stimulation in the presence of endogenous DAMPS. CONCLUSIONS: These results reveal an alternative signal transduction network compatible with regeneration that may ultimately lead to the promotion of enhanced tissue repair in mammals.


Assuntos
Moléculas com Motivos Associados a Patógenos , Urodelos , Animais , Inflamação , Ligantes , Mamíferos/metabolismo , Camundongos , Transdução de Sinais , Receptores Toll-Like/metabolismo
2.
J Mol Cell Cardiol ; 163: 20-32, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34624332

RESUMO

Understanding the spatial gene expression and regulation in the heart is key to uncovering its developmental and physiological processes, during homeostasis and disease. Numerous techniques exist to gain gene expression and regulation information in organs such as the heart, but few utilize intuitive true-to-life three-dimensional representations to analyze and visualise results. Here we combined transcriptomics with 3D-modelling to interrogate spatial gene expression in the mammalian heart. For this, we microdissected and sequenced transcriptome-wide 18 anatomical sections of the adult mouse heart. Our study has unveiled known and novel genes that display complex spatial expression in the heart sub-compartments. We have also created 3D-cardiomics, an interface for spatial transcriptome analysis and visualization that allows the easy exploration of these data in a 3D model of the heart. 3D-cardiomics is accessible from http://3d-cardiomics.erc.monash.edu/.


Assuntos
Coração , Transcriptoma , Animais , Perfilação da Expressão Gênica/métodos , Mamíferos , Camundongos
3.
Am J Physiol Heart Circ Physiol ; 322(4): H579-H596, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35179974

RESUMO

During the past two decades, the field of mammalian myocardial regeneration has grown dramatically, and with this expanded interest comes increasing claims of experimental manipulations that mediate bona fide proliferation of cardiomyocytes. Too often, however, insufficient evidence or improper controls are provided to support claims that cardiomyocytes have definitively proliferated, a process that should be strictly defined as the generation of two de novo functional cardiomyocytes from one original cardiomyocyte. Throughout the literature, one finds inconsistent levels of experimental rigor applied, and frequently the specific data supplied as evidence of cardiomyocyte proliferation simply indicate cell-cycle activation or DNA synthesis, which do not necessarily lead to the generation of new cardiomyocytes. In this review, we highlight potential problems and limitations faced when characterizing cardiomyocyte proliferation in the mammalian heart, and summarize tools and experimental standards, which should be used to support claims of proliferation-based remuscularization. In the end, definitive establishment of de novo cardiomyogenesis can be difficult to prove; therefore, rigorous experimental strategies should be used for such claims.


Assuntos
Miócitos Cardíacos , Regeneração , Animais , Ciclo Celular , Proliferação de Células , Coração/fisiologia , Mamíferos , Miócitos Cardíacos/fisiologia
4.
Circulation ; 142(15): 1448-1463, 2020 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-32795101

RESUMO

BACKGROUND: Cardiac fibrosis is a key antecedent to many types of cardiac dysfunction including heart failure. Physiological factors leading to cardiac fibrosis have been recognized for decades. However, the specific cellular and molecular mediators that drive cardiac fibrosis, and the relative effect of disparate cell populations on cardiac fibrosis, remain unclear. METHODS: We developed a novel cardiac single-cell transcriptomic strategy to characterize the cardiac cellulome, the network of cells that forms the heart. This method was used to profile the cardiac cellular ecosystem in response to 2 weeks of continuous administration of angiotensin II, a profibrotic stimulus that drives pathological cardiac remodeling. RESULTS: Our analysis provides a comprehensive map of the cardiac cellular landscape uncovering multiple cell populations that contribute to pathological remodeling of the extracellular matrix of the heart. Two phenotypically distinct fibroblast populations, Fibroblast-Cilp and Fibroblast-Thbs4, emerged after induction of tissue stress to promote fibrosis in the absence of smooth muscle actin-expressing myofibroblasts, a key profibrotic cell population. After angiotensin II treatment, Fibroblast-Cilp develops as the most abundant fibroblast subpopulation and the predominant fibrogenic cell type. Mapping intercellular communication networks within the heart, we identified key intercellular trophic relationships and shifts in cellular communication after angiotensin II treatment that promote the development of a profibrotic cellular microenvironment. Furthermore, the cellular responses to angiotensin II and the relative abundance of fibrogenic cells were sexually dimorphic. CONCLUSIONS: These results offer a valuable resource for exploring the cardiac cellular landscape in health and after chronic cardiovascular stress. These data provide insights into the cellular and molecular mechanisms that promote pathological remodeling of the mammalian heart, highlighting early transcriptional changes that precede chronic cardiac fibrosis.


Assuntos
Cardiomegalia/metabolismo , Fibroblastos/metabolismo , Perfilação da Expressão Gênica , Miocárdio/metabolismo , Análise de Célula Única , Estresse Fisiológico , Animais , Cardiomegalia/patologia , Fibroblastos/patologia , Fibrose , Camundongos , Miocárdio/patologia , Pirofosfatases/metabolismo , Trombospondinas/metabolismo
5.
Int J Mol Sci ; 22(4)2021 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-33669808

RESUMO

Recent technological advances have revolutionized the study of tissue biology and garnered a greater appreciation for tissue complexity. In order to understand cardiac development, heart tissue homeostasis, and the effects of stress and injury on the cardiovascular system, it is essential to characterize the heart at high cellular resolution. Single-cell profiling provides a more precise definition of tissue composition, cell differentiation trajectories, and intercellular communication, compared to classical bulk approaches. Here, we aim to review how recent single-cell multi-omic studies have changed our understanding of cell dynamics during cardiac development, and in the healthy and diseased adult myocardium.


Assuntos
Sistema Cardiovascular/citologia , Análise de Célula Única , Transcriptoma/genética , Animais , COVID-19/genética , COVID-19/patologia , Reprogramação Celular/genética , Desenvolvimento Embrionário/genética , Humanos
6.
Semin Cell Dev Biol ; 61: 71-79, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27521522

RESUMO

Identification of the key ingredients and essential processes required to achieve perfect tissue regeneration in humans has so far remained elusive. Injury in vertebrates induces an obligatory wound response that will precede or overlap any regeneration specific program or scarring outcome. This process shapes the cellular and molecular landscape of the tissue, influencing the success of endogenous repair pathways or for potential clinical intervention. The involvement of immune cells is also required for aspects of development extending beyond the initial inflammatory phase of wounding. It has now become clear from amphibian, fish and mammalian models of tissue injury that the type of immune response and the profile of immune cells attending the site of injury can act as the gatekeepers that determine wound repair quality. The heterogeneity among innate and adaptive immune cell populations, along with the developmental origin of these cells, form key ingredients affecting the potential for downstream repair and the suppression of fibrosis. Cell-to-cell interactions between immune cells, such as macrophages and T cells, with stem cells and mesenchymal cells are critically important for shaping this process and these exchanges, are in turn influenced by the type of injury, tissue location and developmental stage of the organism. Developmentally, mouse cardiac regeneration is restricted to early stages of postnatal life where the balance of innate to adaptive immune cells may be poised towards regeneration. In the injured adult mouse liver, specific macrophage subsets improve repair while other bone marrow derived cells can exacerbate injury. Other studies using genetically diverse mice have shown enhanced regeneration in certain strains, restricted to specific tissues. This enhanced repair is linked with expression of genes such as Insulin-like Growth Factor- 1 (IGF-1) and activin (Act 1), that both play important roles in shaping the immune system. Immune cells are now appreciated to have powerful influences on critical cell types required for regeneration success. The winning recipe for tissue regeneration is likely to be found ultimately by identifying the genetic elements and specific cell populations that limit or allow intrinsic potential. This will be essential for developing therapeutic strategies for tissue regeneration in humans.


Assuntos
Sistema Imunitário/fisiologia , Regeneração/fisiologia , Animais , Evolução Biológica , Humanos , Imunidade Celular , Imunidade Inata , Cicatrização
7.
Development ; 143(3): 387-97, 2016 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-26839342

RESUMO

In the adult, tissue repair after injury is generally compromised by fibrosis, which maintains tissue integrity with scar formation but does not restore normal architecture and function. The process of regeneration is necessary to replace the scar and rebuild normal functioning tissue. Here, we address this problem in the context of heart disease, and discuss the origins and characteristics of cardiac fibroblasts, as well as the crucial role that they play in cardiac development and disease. We discuss the dual nature of cardiac fibroblasts, which can lead to scarring, pathological remodelling and functional deficit, but can also promote heart function in some contexts. Finally, we review current and proposed approaches whereby regeneration could be fostered by interventions that limit scar formation.


Assuntos
Cicatriz/patologia , Fibroblastos/citologia , Coração/embriologia , Regeneração , Animais , Perfilação da Expressão Gênica , Humanos , Células-Tronco/citologia
8.
Circ Res ; 118(3): 400-9, 2016 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-26635390

RESUMO

RATIONALE: Accurate knowledge of the cellular composition of the heart is essential to fully understand the changes that occur during pathogenesis and to devise strategies for tissue engineering and regeneration. OBJECTIVE: To examine the relative frequency of cardiac endothelial cells, hematopoietic-derived cells, and fibroblasts in the mouse and human heart. METHODS AND RESULTS: Using a combination of genetic tools and cellular markers, we examined the occurrence of the most prominent cell types in the adult mouse heart. Immunohistochemistry revealed that endothelial cells constitute >60%, hematopoietic-derived cells 5% to 10%, and fibroblasts <20% of the nonmyocytes in the heart. A refined cell isolation protocol and an improved flow cytometry approach provided an independent means of determining the relative abundance of nonmyocytes. High-dimensional analysis and unsupervised clustering of cell populations confirmed that endothelial cells are the most abundant cell population. Interestingly, fibroblast numbers are smaller than previously estimated, and 2 commonly assigned fibroblast markers, Sca-1 and CD90, under-represent fibroblast numbers. We also describe an alternative fibroblast surface marker that more accurately identifies the resident cardiac fibroblast population. CONCLUSIONS: This new perspective on the abundance of different cell types in the heart demonstrates that fibroblasts comprise a relatively minor population. By contrast, endothelial cells constitute the majority of noncardiomyocytes and are likely to play a greater role in physiological function and response to injury than previously appreciated.


Assuntos
Células Endoteliais/metabolismo , Fibroblastos/metabolismo , Coração , Células-Tronco Hematopoéticas/metabolismo , Adulto , Animais , Biomarcadores/metabolismo , Contagem de Células , Diferenciação Celular , Linhagem da Célula , Separação Celular/métodos , Feminino , Citometria de Fluxo , Regulação da Expressão Gênica , Proteínas de Fluorescência Verde/biossíntese , Proteínas de Fluorescência Verde/genética , Humanos , Imuno-Histoquímica , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Pessoa de Meia-Idade , Fenótipo
9.
Differentiation ; 92(3): 93-101, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27421610

RESUMO

The mammalian heart is responsible for supplying blood to two separate circulation circuits in a parallel manner. This design provides efficient oxygenation and nutrients to the whole body through the left-sided pump, while the right-sided pump delivers blood to the pulmonary circulation for re-oxygenation. In order to achieve this demanding job, the mammalian heart evolved into a highly specialised organ comprised of working contractile cells or cardiomyocytes, a directional and insulated conduction system, capable of independently generating and conducting electric impulses that synchronises chamber contraction, valves that allow the generation of high pressure and directional blood flow into the circulation, coronary circulation, that supplies oxygenated blood for the heart muscle high metabolically active pumping role and inlet/outlet routes, as the venae cavae and pulmonary veins, aorta and pulmonary trunk. This organization highlights the complexity and compartmentalization of the heart. This review will focus on the cardiac fibroblast, a cell type until recently ignored, but that profoundly influences heart function in its various compartments. We will discuss current advances on definitions, molecular markers and function of cardiac fibroblasts in heart homeostasis and disease.


Assuntos
Fibroblastos/citologia , Coração/crescimento & desenvolvimento , Coração/fisiologia , Homeostase/fisiologia , Células-Tronco Mesenquimais/citologia , Células-Tronco/citologia , Animais , Humanos
10.
Differentiation ; 91(1-3): 29-41, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26897459

RESUMO

Nkx2-5 is one of the master regulators of cardiac development, homeostasis and disease. This transcription factor has been previously associated with a suite of cardiac congenital malformations and impairment of electrical activity. When disease causative mutations in transcription factors are considered, NKX2-5 gene dysfunction is the most common abnormality found in patients. Here we describe a novel mouse model and subsequent implications of Nkx2-5 loss for aspects of myocardial electrical activity. In this work we have engineered a new Nkx2-5 conditional knockout mouse in which flox sites flank the entire Nkx2-5 locus, and validated this line for the study of heart development, differentiation and disease using a full deletion strategy. While our homozygous knockout mice show typical embryonic malformations previously described for the lack of the Nkx2-5 gene, hearts of heterozygous adult mice show moderate morphological and functional abnormalities that are sufficient to sustain blood supply demands under homeostatic conditions. This study further reveals intriguing aspects of Nkx2-5 function in the control of cardiac electrical activity. Using a combination of mouse genetics, biochemistry, molecular and cell biology, we demonstrate that Nkx2-5 regulates the gene encoding Kcnh2 channel and others, shedding light on potential mechanisms generating electrical abnormalities observed in patients bearing NKX2-5 dysfunction and opening opportunities to the study of novel therapeutic targets for anti-arrhythmogenic therapies.


Assuntos
Canal de Potássio ERG1/genética , Cardiopatias Congênitas/genética , Coração/crescimento & desenvolvimento , Proteína Homeobox Nkx-2.5/genética , Animais , Modelos Animais de Doenças , Canal de Potássio ERG1/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Coração/embriologia , Coração/fisiopatologia , Cardiopatias Congênitas/fisiopatologia , Humanos , Canais Iônicos/genética , Canais Iônicos/metabolismo , Camundongos , Camundongos Knockout , Mutação
11.
Circ Res ; 114(9): 1422-34, 2014 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-24650916

RESUMO

RATIONALE: Cardiac fibroblasts are critical to proper heart function through multiple interactions with the myocardial compartment, but appreciation of their contribution has suffered from incomplete characterization and lack of cell-specific markers. OBJECTIVE: To generate an unbiased comparative gene expression profile of the cardiac fibroblast pool, identify and characterize the role of key genes in cardiac fibroblast function, and determine their contribution to myocardial development and regeneration. METHODS AND RESULTS: High-throughput cell surface and intracellular profiling of cardiac and tail fibroblasts identified canonical mesenchymal stem cell and a surprising number of cardiogenic genes, some expressed at higher levels than in whole heart. While genetically marked fibroblasts contributed heterogeneously to interstitial but not cardiomyocyte compartments in infarcted hearts, fibroblast-restricted depletion of one highly expressed cardiogenic marker, T-box 20, caused marked myocardial dysmorphology and perturbations in scar formation on myocardial infarction. CONCLUSIONS: The surprising transcriptional identity of cardiac fibroblasts, the adoption of cardiogenic gene programs, and direct contribution to cardiac development and repair provoke alternative interpretations for studies on more specialized cardiac progenitors, offering a novel perspective for reinterpreting cardiac regenerative therapies.


Assuntos
Fibroblastos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Células-Tronco Mesenquimais/metabolismo , Infarto do Miocárdio/genética , Miocárdio/metabolismo , Regeneração/genética , Animais , Biomarcadores/metabolismo , Células Cultivadas , Modelos Animais de Doenças , Fibroblastos/patologia , Perfilação da Expressão Gênica/métodos , Redes Reguladoras de Genes , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Células-Tronco Mesenquimais/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Infarto do Miocárdio/fisiopatologia , Miocárdio/patologia , Análise de Sequência com Séries de Oligonucleotídeos , RNA não Traduzido/genética , Proteínas com Domínio T/deficiência , Proteínas com Domínio T/genética
12.
Proc Natl Acad Sci U S A ; 110(23): 9415-20, 2013 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-23690624

RESUMO

The failure to replace damaged body parts in adult mammals results from a muted growth response and fibrotic scarring. Although infiltrating immune cells play a major role in determining the variable outcome of mammalian wound repair, little is known about the modulation of immune cell signaling in efficiently regenerating species such as the salamander, which can regrow complete body structures as adults. Here we present a comprehensive analysis of immune signaling during limb regeneration in axolotl, an aquatic salamander, and reveal a temporally defined requirement for macrophage infiltration in the regenerative process. Although many features of mammalian cytokine/chemokine signaling are retained in the axolotl, they are more dynamically deployed, with simultaneous induction of inflammatory and anti-inflammatory markers within the first 24 h after limb amputation. Systemic macrophage depletion during this period resulted in wound closure but permanent failure of limb regeneration, associated with extensive fibrosis and disregulation of extracellular matrix component gene expression. Full limb regenerative capacity of failed stumps was restored by reamputation once endogenous macrophage populations had been replenished. Promotion of a regeneration-permissive environment by identification of macrophage-derived therapeutic molecules may therefore aid in the regeneration of damaged body parts in adult mammals.


Assuntos
Ambystoma mexicanum/fisiologia , Extremidades/fisiologia , Regulação da Expressão Gênica/fisiologia , Macrófagos/fisiologia , Regeneração/fisiologia , Transdução de Sinais/fisiologia , Análise de Variância , Animais , Citocinas/imunologia , Matriz Extracelular/metabolismo , Citometria de Fluxo , Fluorescência , Técnicas Histológicas , Imuno-Histoquímica , Macrófagos/imunologia , Células Mieloides/imunologia , Fagocitose/fisiologia , Reação em Cadeia da Polimerase em Tempo Real , Transdução de Sinais/imunologia , Cicatrização/fisiologia
13.
BMC Bioinformatics ; 16: 141, 2015 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-25929466

RESUMO

BACKGROUND: Existing de novo software platforms have largely overlooked a valuable resource, the expertise of the intended biologist users. Typical data representations such as long gene lists, or highly dense and overlapping transcription factor networks often hinder biologists from relating these results to their expertise. RESULTS: VISIONET, a streamlined visualisation tool built from experimental needs, enables biologists to transform large and dense overlapping transcription factor networks into sparse human-readable graphs via numerically filtering. The VISIONET interface allows users without a computing background to interactively explore and filter their data, and empowers them to apply their specialist knowledge on far more complex and substantial data sets than is currently possible. Applying VISIONET to the Tbx20-Gata4 transcription factor network led to the discovery and validation of Aldh1a2, an essential developmental gene associated with various important cardiac disorders, as a healthy adult cardiac fibroblast gene co-regulated by cardiogenic transcription factors Gata4 and Tbx20. CONCLUSIONS: We demonstrate with experimental validations the utility of VISIONET for expertise-driven gene discovery that opens new experimental directions that would not otherwise have been identified.


Assuntos
Gráficos por Computador , Redes Reguladoras de Genes , Estudos de Associação Genética , Coração/fisiologia , Software , Fatores de Transcrição/genética , Adulto , Células Cultivadas , Fibroblastos/citologia , Fibroblastos/metabolismo , Fator de Transcrição GATA4/genética , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Proteínas com Domínio T/genética
14.
Elife ; 122023 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-37276142

RESUMO

Mitochondria play an important role in both normal heart function and disease etiology. We report analysis of common genetic variations contributing to mitochondrial and heart functions using an integrative proteomics approach in a panel of inbred mouse strains called the Hybrid Mouse Diversity Panel (HMDP). We performed a whole heart proteome study in the HMDP (72 strains, n=2-3 mice) and retrieved 848 mitochondrial proteins (quantified in ≥50 strains). High-resolution association mapping on their relative abundance levels revealed three trans-acting genetic loci on chromosomes (chr) 7, 13 and 17 that regulate distinct classes of mitochondrial proteins as well as cardiac hypertrophy. DAVID enrichment analyses of genes regulated by each of the loci revealed that the chr13 locus was highly enriched for complex-I proteins (24 proteins, P=2.2E-61), the chr17 locus for mitochondrial ribonucleoprotein complex (17 proteins, P=3.1E-25) and the chr7 locus for ubiquinone biosynthesis (3 proteins, P=6.9E-05). Follow-up high resolution regional mapping identified NDUFS4, LRPPRC and COQ7 as the candidate genes for chr13, chr17 and chr7 loci, respectively, and both experimental and statistical analyses supported their causal roles. Furthermore, a large cohort of Diversity Outbred mice was used to corroborate Lrpprc gene as a driver of mitochondrial DNA (mtDNA)-encoded gene regulation, and to show that the chr17 locus is specific to heart. Variations in all three loci were associated with heart mass in at least one of two independent heart stress models, namely, isoproterenol-induced heart failure and diet-induced obesity. These findings suggest that common variations in certain mitochondrial proteins can act in trans to influence tissue-specific mitochondrial functions and contribute to heart hypertrophy, elucidating mechanisms that may underlie genetic susceptibility to heart failure in human populations.


Assuntos
Insuficiência Cardíaca , Proteoma , Animais , Camundongos , Cardiomegalia/genética , DNA Mitocondrial/metabolismo , Complexo I de Transporte de Elétrons/metabolismo , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/metabolismo , Camundongos Endogâmicos , Mitocôndrias/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Proteoma/metabolismo
15.
Nat Commun ; 14(1): 4481, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37491352

RESUMO

Inflammation in response to severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection drives severity of coronavirus disease 2019 (COVID-19) and is influenced by host genetics. To understand mechanisms of inflammation, animal models that reflect genetic diversity and clinical outcomes observed in humans are needed. We report a mouse panel comprising the genetically diverse Collaborative Cross (CC) founder strains crossed to human ACE2 transgenic mice (K18-hACE2) that confers susceptibility to SARS-CoV-2. Infection of CC x K18-hACE2 resulted in a spectrum of survival, viral replication kinetics, and immune profiles. Importantly, in contrast to the K18-hACE2 model, early type I interferon (IFN-I) and regulated proinflammatory responses were required for control of SARS-CoV-2 replication in PWK x K18-hACE2 mice that were highly resistant to disease. Thus, virus dynamics and inflammation observed in COVID-19 can be modeled in diverse mouse strains that provide a genetically tractable platform for understanding anti-coronavirus immunity.


Assuntos
COVID-19 , Interferon Tipo I , Humanos , Camundongos , Animais , Citocinas , SARS-CoV-2 , Camundongos Transgênicos , Inflamação/genética , Modelos Animais de Doenças , Pulmão
16.
Elife ; 112022 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-35293863

RESUMO

Organ fibroblasts are essential components of homeostatic and diseased tissues. They participate in sculpting the extracellular matrix, sensing the microenvironment, and communicating with other resident cells. Recent studies have revealed transcriptomic heterogeneity among fibroblasts within and between organs. To dissect the basis of interorgan heterogeneity, we compare the gene expression of murine fibroblasts from different tissues (tail, skin, lung, liver, heart, kidney, and gonads) and show that they display distinct positional and organ-specific transcriptome signatures that reflect their embryonic origins. We demonstrate that expression of genes typically attributed to the surrounding parenchyma by fibroblasts is established in embryonic development and largely maintained in culture, bioengineered tissues and ectopic transplants. Targeted knockdown of key organ-specific transcription factors affects fibroblast functions, in particular genes involved in the modulation of fibrosis and inflammation. In conclusion, our data reveal that adult fibroblasts maintain an embryonic gene expression signature inherited from their organ of origin, thereby increasing our understanding of adult fibroblast heterogeneity. The knowledge of this tissue-specific gene signature may assist in targeting fibrotic diseases in a more precise, organ-specific manner.


Assuntos
Fibroblastos , Transcriptoma , Animais , Fibroblastos/metabolismo , Fibrose , Pulmão/metabolismo , Camundongos , Pele/metabolismo
17.
Aging Cell ; 21(12): e13724, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36179270

RESUMO

Mice bred in 2017 and entered into the C2017 cohort were tested for possible lifespan benefits of (R/S)-1,3-butanediol (BD), captopril (Capt), leucine (Leu), the Nrf2-activating botanical mixture PB125, sulindac, syringaresinol, or the combination of rapamycin and acarbose started at 9 or 16 months of age (RaAc9, RaAc16). In male mice, the combination of Rapa and Aca started at 9 months and led to a longer lifespan than in either of the two prior cohorts of mice treated with Rapa only, suggesting that this drug combination was more potent than either of its components used alone. In females, lifespan in mice receiving both drugs was neither higher nor lower than that seen previously in Rapa only, perhaps reflecting the limited survival benefits seen in prior cohorts of females receiving Aca alone. Capt led to a significant, though small (4% or 5%), increase in female lifespan. Capt also showed some possible benefits in male mice, but the interpretation was complicated by the unusually low survival of controls at one of the three test sites. BD seemed to produce a small (2%) increase in females, but only if the analysis included data from the site with unusually short-lived controls. None of the other 4 tested agents led to any lifespan benefit. The C2017 ITP dataset shows that combinations of anti-aging drugs may have effects that surpass the benefits produced by either drug used alone, and that additional studies of captopril, over a wider range of doses, are likely to be rewarding.


Assuntos
Acarbose , Sirolimo , Camundongos , Masculino , Feminino , Animais , Acarbose/farmacologia , Sirolimo/farmacologia , Captopril/farmacologia , Longevidade , Envelhecimento
18.
Front Cell Dev Biol ; 9: 750587, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34568347

RESUMO

The lack of scar-free healing and regeneration in many adult human tissues imposes severe limitations on the recovery of function after injury. In stark contrast, salamanders can functionally repair a range of clinically relevant tissues throughout adult life. The impressive ability to regenerate whole limbs after amputation, or regenerate following cardiac injury, is critically dependent on the recruitment of (myeloid) macrophage white blood cells to the site of injury. Amputation in the absence of macrophages results in regeneration failure and scar tissue induction. Identifying the exact hematopoietic source or reservoir of myeloid cells supporting regeneration is a necessary step in characterizing differences in macrophage phenotypes regulating scarring or regeneration across species. Mammalian wounds are dominated by splenic-derived monocytes that originate in the bone marrow and differentiate into macrophages within the wound. Unlike mammals, adult axolotls do not have functional bone marrow but instead utilize liver and spleen tissues as major sites for adult hematopoiesis. To interrogate leukocyte identity, tissue origins, and modes of recruitment, we established several transgenic axolotl hematopoietic tissue transplant models and flow cytometry protocols to study cell migration and identify the source of pro-regenerative macrophages. We identified that although bidirectional trafficking of leukocytes can occur between spleen and liver tissues, the liver is the major source of leukocytes recruited to regenerating limbs. Recruitment of leukocytes and limb regeneration occurs in the absence of the spleen, thus confirming the dependence of liver-derived myeloid cells in regeneration and that splenic maturation is dispensable for the education of pro-regenerative macrophages. This work provides an important foundation for understanding the hematopoietic origins and education of myeloid cells recruited to, and essential for, adult tissue regeneration.

19.
Cardiovasc Res ; 117(10): 2252-2262, 2021 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-32941598

RESUMO

AIMS: Sex differences have been consistently identified in cardiac physiology and incidence of cardiac disease. However, the underlying biological causes for the differences remain unclear. We sought to characterize the cardiac non-myocyte cellular landscape in female and male hearts to determine whether cellular proportion of the heart is sex-dependent and whether endocrine factors modulate the cardiac cell proportions. METHODS AND RESULTS: Utilizing high-dimensional flow cytometry and immunofluorescence imaging, we found significant sex-specific differences in cellular composition of the heart in adult and juvenile mice, that develops postnatally. Removal of systemic gonadal hormones by gonadectomy results in rapid sex-specific changes in cardiac non-myocyte cellular proportions including alteration in resident mesenchymal cell and leucocyte populations, indicating gonadal hormones and their downstream targets regulate cardiac cellular composition. The ectopic reintroduction of oestrogen and testosterone to female and male mice, respectively, reverses many of these gonadectomy-induced compositional changes. CONCLUSION: This work shows that the constituent cell types of the mouse heart are hormone-dependent and that the cardiac cellular landscapes are distinct in females and males, remain plastic, and can be rapidly modulated by endocrine factors. These observations have implications for strategies aiming to therapeutically alter cardiac cellular heterogeneity and underscore the importance of considering biological sex for studies examining cardiac physiology and stress responses.


Assuntos
Estradiol/metabolismo , Miocárdio/metabolismo , Testosterona/metabolismo , Fatores Etários , Animais , Separação Celular , Estradiol/farmacologia , Terapia de Reposição de Estrogênios , Feminino , Citometria de Fluxo , Imunofluorescência , Masculino , Camundongos Endogâmicos C57BL , Miocárdio/citologia , Orquiectomia , Ovariectomia , RNA-Seq , Caracteres Sexuais , Análise de Célula Única , Testosterona/farmacologia , Transcriptoma
20.
STAR Protoc ; 1(2): 100077, 2020 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-33000003

RESUMO

Interstitial cells have a crucial role in cardiac fibrosis and repair of the mammalian heart. Single-cell profiling using droplet-based technology has revolutionized the investigation of cell states and identities. Here, we present a protocol for the efficient isolation of high-quality live nucleated non-cardiomyocytes from adult murine heart, for unbiased single-cell RNA sequencing using 10× Chromium technology. This protocol has been applied to homeostatic and injured hearts from different mouse strains. For complete details on the use and execution of this protocol, please refer to Forte et al. (2020).


Assuntos
Técnicas de Cultura de Células/métodos , Células Cultivadas/citologia , Miocárdio/citologia , Análise de Célula Única/métodos , Animais , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA