Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Pflugers Arch ; 475(10): 1211-1223, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37624386

RESUMO

To advance evidence-based practice and targeted treatments of low back pain (LBP), a better pathophysiological understanding and reliable outcome measures are required. The processing of nociceptive information from deeper somatic structures (e.g., muscle, fascia) might play an essential role in the pathophysiology of LBP. In this study, we measured the intra- and inter-session reliability of electrical detection and pain thresholds of cutaneous and muscle primary afferents of the lower back. Twenty healthy participants attended two study visits separated by 27.7 ± 1.7 days. To determine the location-specific electrical detection threshold (EDT) and pain threshold (EPT), needle electrodes were inserted in the epidermal layer over, and in the lumbar erector spinae muscle. Additionally, established quantitative sensory testing (QST) parameters were assessed. Reliability was determined by differences between measurements, intraclass correlation coefficients (ICC2,1), Bland-Altman plots, and standard error of measurement (SEM). Correspondence between QST parameters and electrical thresholds was assessed using Pearson's correlation. Except for cutaneous EPT, no significant (p ≤ 0.05) intra- and inter-session differences were observed. Excellent intra-session reliability was shown for cutaneous and intramuscular electrical stimulations and all QST parameters (ICC: 0.76-0.93). Inter-session reliabilities were good (ICC: 0.74-0.75) except for electrical stimulations (ICC: 0.08-0.36). Limits of agreement and SEM were higher for inter-session than intra-session. A medium to strong relationship was found between electrical and mechanical/pressure pain thresholds. In conclusion, cutaneous and intramuscular electrical stimulation will potentially close an important diagnostic gap regarding the selective examination of deep tissue afferents and provide location-specific information for the excitability of non-nociceptive and nociceptive afferents.


Assuntos
Dor Lombar , Limiar da Dor , Humanos , Reprodutibilidade dos Testes , Músculos , Dor Lombar/diagnóstico , Estimulação Elétrica
2.
J Neurophysiol ; 130(2): 436-446, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37405990

RESUMO

Modulated autonomic responses to noxious stimulation have been reported in experimental and clinical pain. These effects are likely mediated by nociceptive sensitization, but may also, more simply reflect increased stimulus-associated arousal. To disentangle between sensitization- and arousal-mediated effects on autonomic responses to noxious input, we recorded sympathetic skin responses (SSRs) in response to 10 pinprick and heat stimuli before (PRE) and after (POST) an experimental heat pain model to induce secondary hyperalgesia (EXP) and a control model (CTRL) in 20 healthy females. Pinprick and heat stimuli were individually adapted for pain perception (4/10) across all assessments. Heart rate, heart rate variability, and skin conductance level (SCL) were assessed before, during, and after the experimental heat pain model. Both pinprick- and heat-induced SSRs habituated from PRE to POST in CTRL, but not EXP (P = 0.033). Background SCL (during stimuli application) was heightened in EXP compared with CTRL condition during pinprick and heat stimuli (P = 0.009). Our findings indicate that enhanced SSRs after an experimental pain model are neither fully related to subjective pain, as SSRs dissociated from perceptual responses, nor to nociceptive sensitization, as SSRs were enhanced for both modalities. Our findings can, however, be explained by priming of the autonomic nervous system during the experimental pain model, which makes the autonomic nervous system more susceptible to noxious input. Taken together, autonomic readouts have the potential to objectively assess not only nociceptive sensitization but also priming of the autonomic nervous system, which may be involved in the generation of distinct clinical pain phenotypes.NEW & NOTEWORTHY The facilitation of pain-induced sympathetic skin responses observed after experimentally induced central sensitization is unspecific to the stimulation modality and thereby unlikely solely driven by nociceptive sensitization. In addition, these enhanced pain-induced autonomic responses are also not related to higher stimulus-associated arousal, but rather a general priming of the autonomic nervous system. Hence, autonomic readouts may be able to detect generalized hyperexcitability in chronic pain, beyond the nociceptive system, which may contribute to clinical pain phenotypes.


Assuntos
Dor Crônica , Hiperalgesia , Feminino , Humanos , Medição da Dor , Percepção da Dor , Sistema Nervoso Autônomo
3.
Pain Med ; 24(8): 974-984, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-36946277

RESUMO

OBJECTIVE: Widespread pain hypersensitivity and enhanced temporal summation of pain (TSP) are commonly reported in patients with complex regional pain syndrome (CRPS) and discussed as proxies for central sensitization. This study aimed to directly relate such signs of neuronal hyperexcitability to the pain phenotype of CRPS patients. METHODS: Twenty-one CRPS patients and 20 healthy controls (HC) were recruited. The pain phenotype including spatial pain extent (assessed in % body surface) and intensity were assessed and related to widespread pain hypersensitivity, TSP, and psychological factors. Quantitative sensory testing (QST) was performed in the affected, the contralateral and a remote (control) area. RESULTS: CRPS patients showed decreased pressure pain thresholds in all tested areas (affected: t(34) = 4.98, P < .001, contralateral: t(35) = 3.19, P = .005, control: t(31) = 2.65, P = .012). Additionally, patients showed increased TSP in the affected area (F(3,111) = 4.57, P = .009) compared to HC. TSP was even more enhanced in patients with a high compared to a low spatial pain extent (F(3,51) = 5.67, P = .008), suggesting pronounced spinal sensitization in patients with extended pain patterns. Furthermore, the spatial pain extent positively correlated with the Bath Body Perception Disturbance Scale (ρ = 0.491; P = .048). CONCLUSIONS: Overall, we provide evidence that the pain phenotype in CRPS, that is, spatial pain extent, might be related to sensitization mechanism within the central nociceptive system. This study points towards central neuronal excitability as a potential therapeutic target in patients with more widespread CRPS.


Assuntos
Sensibilização do Sistema Nervoso Central , Síndromes da Dor Regional Complexa , Humanos , Estudos Transversais , Medição da Dor , Dor , Síndromes da Dor Regional Complexa/diagnóstico
4.
Spinal Cord ; 61(10): 536-540, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37491608

RESUMO

STUDY DESIGN: Expert opinion, feedback, revisions, and final consensus. OBJECTIVES: To update the International Spinal Cord Injury Pain Basic Data Set (ISCIPBDS version 2.0) and incorporate suggestions from the SCI pain clinical and research community with respect to overall utility. SETTING: International. METHODS: The ISCIPBDS working group evaluated these suggestions and made modifications. The revised ISCIPBDS (Version 3.0) was then reviewed by members of the International SCI Data Sets Committee, the American Spinal Injury Association (ASIA) Board, the International Spinal Cord Society (ISCoS) Executive and Scientific Committees, individual reviewers and societies, and posted on the ASIA and ISCoS websites for 1 month to elicit comments before final approval by ASIA and ISCoS. RESULTS: The ISCIPBDS (Version 3.0) was updated to make the dataset more flexible and useful: 1. The assessment can be based on the patient's perception of several of his/her "worst" pain(s) or based on the International SCI Pain (ISCIP) Classification-defined or other pain types, depending on the specific research questions or clinical needs. 2. Pain interference should usually be rated for overall pain but may also be used for specific pain problems if needed. 3. An optional pain drawing was added to complement the check box documentation of pain location. 4. Data categories consistent with the Extended Pain Dataset list of current treatments were added. 5. Several new training cases were added.


Assuntos
Traumatismos da Medula Espinal , Humanos , Masculino , Feminino , Estados Unidos , Traumatismos da Medula Espinal/complicações , Traumatismos da Medula Espinal/epidemiologia , Traumatismos da Medula Espinal/terapia , Dor/diagnóstico , Dor/etiologia , Bases de Dados Factuais
5.
Neuromodulation ; 26(8): 1747-1756, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36266180

RESUMO

OBJECTIVE: The beneficial effects of thalamic deep brain stimulation (DBS) at various target sites in treating chronic central neuropathic pain (CPSP) remain unclear. This study aimed to evaluate the effectiveness of DBS at a previously untested target site in the central lateral (CL) thalamus, together with classical sensory thalamic stimulation (ventral posterior [VP] complex). MATERIALS AND METHODS: We performed a monocentric retrospective study of a consecutive series of six patients with CPSP who underwent combined DBS lead implantation of the CL and VP. Patient-reported outcome measures were recorded before and after surgery using the numeric rating scale (NRS), short-form McGill pain questionnaire (sf-MPQ), EuroQol 5-D quality-of-life questionnaire, and Beck Depression Inventory. DBS leads were reconstructed and projected onto a three-dimensional stereotactic atlas. RESULTS: NRS-but not sf-MPQ-rated pain intensity-was significantly reduced throughout the follow-up period of 12 months compared with baseline (p = 0.005, and p = 0.06 respectively, Friedman test). At the last available follow-up (12 to 30 months), three patients described a more than 50% reduction. Two of the three long-term responders were stimulated in the CL (1000 Hz, 90 µs, 3.5-5.0 mA), whereas the third preferred VP complex stimulation (50 Hz, 200 µs, 0.7-1.2 mA). No persistent procedure- or stimulation-associated side effects were noted. CONCLUSIONS: These preliminary findings suggest that DBS of the CL might constitute a promising alternative target in cases in which classical VP complex stimulation does not yield satisfactory postoperative pain reduction. The results need to be confirmed in larger, prospective series of patients.


Assuntos
Estimulação Encefálica Profunda , Neuralgia , Humanos , Estimulação Encefálica Profunda/métodos , Estudos Retrospectivos , Neuralgia/etiologia , Neuralgia/terapia , Tálamo/diagnóstico por imagem , Medição da Dor/métodos
6.
Neuroimage ; 247: 118742, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-34863962

RESUMO

The descending pain modulatory system in humans is commonly investigated using conditioned pain modulation (CPM). Whilst variability in CPM efficiency, i.e., inhibition and facilitation, is normal in healthy subjects, exploring the inter-relationship between brain structure, resting-state functional connectivity (rsFC) and CPM readouts will provide greater insight into the underlying CPM efficiency seen in healthy individuals. Thus, this study combined CPM testing, voxel-based morphometry (VBM) and rsFC to identify the neural correlates of CPM in a cohort of healthy subjects (n =40), displaying pain inhibition (n = 29), facilitation (n = 10) and no CPM effect (n = 1). Clusters identified in the VBM analysis were implemented in the rsFC analysis alongside key constituents of the endogenous pain modulatory system. Greater pain inhibition was related to higher volume of left frontal cortices and stronger rsFC between the motor cortex and periaqueductal grey. Conversely, weaker pain inhibition was related to higher volume of the right frontal cortex - coupled with stronger rsFC to the primary somatosensory cortex, and rsFC between the amygdala and posterior insula. Overall, healthy subjects showed higher volume and stronger rsFC of brain regions involved with descending modulation, while the lateral and medial pain systems were related to greater pain inhibition and facilitation during CPM, respectively. These findings reveal structural alignments and functional interactions between supraspinal areas involved in CPM efficiency. Ultimately understanding these underlying variations and how they may become affected in chronic pain conditions, will advance a more targeted subgrouping in pain patients for future cross-sectional studies investigating endogenous pain modulation.


Assuntos
Inibição Psicológica , Vias Neurais/fisiopatologia , Dor/fisiopatologia , Adolescente , Adulto , Idoso , Tonsila do Cerebelo/fisiopatologia , Encéfalo/fisiopatologia , Mapeamento Encefálico , Estudos Transversais , Feminino , Lobo Frontal/fisiopatologia , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Substância Cinzenta Periaquedutal/fisiopatologia , Descanso , Suíça , Adulto Jovem
7.
J Neurophysiol ; 128(5): 1143-1151, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36130178

RESUMO

To better characterize central modulation mechanisms involved in the processing of daily repetitive painful stimulation, laser-evoked potentials (LEPs) were recorded at and away from the conditioning area in healthy participants. In addition, we aimed to evaluate a repetitive painful stimulation paradigm that could be conducted in a shorter time frame than previous studies. Collectively, continuous pain rating, warm and heat pain threshold results suggest that sensitivity to pain was reduced 24 h after the shortened repeated painful stimulation. Laser-evoked potentials revealed a significant increase in the contralateral arm to where the conditioning stimulus was applied. This finding was specific to noxious conditioning (i.e., not seen in the control brush experiment). These results provide neurophysiological evidence of pain facilitation resulting from prolonged exposure to painful heat, potentially arising in supraspinal structures.NEW & NOTEWORTHY We provide evidence for supraspinal faciliation measured via laser-evoked potentails in response to a shortened and methodologically improved repetitive painful stimulation paradigm, serving the broader scientific community, insofar as providing a paradigm can feasibly be completed in a caldendar week. These findings provide new evidence using laser-evoked potentials indicating increased activation of the anterior cingulate cortex during prolonged pain processing.


Assuntos
Potenciais Evocados por Laser , Humanos , Potenciais Evocados por Laser/fisiologia , Limiar da Dor/fisiologia , Dor , Medição da Dor/métodos , Lasers
8.
Pharmacoepidemiol Drug Saf ; 31(1): 13-21, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34657356

RESUMO

PURPOSE: In drug safety and effectiveness studies based on secondary data, the choice of an appropriate exposure measure for a given outcome can be challenging. Different measures of exposure can yield different estimates of treatment effect and safety. There is a knowledge gap with respect to developing and refining measures of drug exposure, to ensure that the exposure measure addresses the study question and is suitable for statistical analysis. METHODS: We present a transparent, step-by-step approach to the development of drug exposure measures involving secondary data. This approach would be of interest to students and investigators with initial training in pharmacoepidemiology. We illustrate the approach using a study about Parkinson's disease. RESULTS: We described the exposure specifications according to the study question. Next, we refined the exposure measure by linking it to knowledge about four major concepts in drug safety and effectiveness studies: drug use patterns, duration, timing, and dose. We then used this knowledge to guide the ultimate choice of exposure measure: time-varying, cumulative 6-month exposure to tamsulosin (a drug used to treat prostate hyperplasia). CONCLUSIONS: The proposed approach links exposure specifications to four major concepts in drug safety and effectiveness studies. Formulating subject-matter knowledge about these major concepts provides an avenue to develop the rationale and specifications for the exposure measure.


Assuntos
Preparações Farmacêuticas , Hiperplasia Prostática , Humanos , Masculino , Farmacoepidemiologia , Projetos de Pesquisa , Tansulosina
9.
Neuroimage ; 225: 117473, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33099013

RESUMO

Laser and contact heat evoked potentials (LEPs and CHEPs, respectively) provide an objective measure of pathways and processes involved in nociception. The majority of studies analyzing LEP or CHEP outcomes have done so based on conventional, across-trial averaging. With this approach, evoked potential components are potentially confounded by latency jitter and ignore relevant information contained within single trials. The current study addressed the advantage of analyzing nociceptive evoked potentials based on responses to noxious stimulations within each individual trial. Single-trial and conventional averaging were applied to data previously collected in 90 healthy subjects from 3 stimulation locations on the upper limb. The primary analysis focused on relationships between single and across-trial averaged CHEP outcomes (i.e., N2P2 amplitude and N2 and P2 latencies) and subject characteristics (i.e., age, sex, height, and rating of perceived intensity), which were examined by way of linear mixed model analysis. Single-trial averaging lead to larger N2P2 amplitudes and longer N2 and P2 latencies. Age and ratings of perceived intensity were the only subject level characteristics associated with CHEPs outcomes that significantly interacted with the method of analysis (conventional vs single-trial averaging). The strength of relationships for age and ratings of perceived intensity, measured by linear fit, were increased for single-trial compared to conventional across-trial averaged CHEP outcomes. By accounting for latency jitter, single-trial averaging improved the associations between CHEPs and physiological outcomes and should be incorporated as a standard analytical technique in future studies.


Assuntos
Potenciais Somatossensoriais Evocados/fisiologia , Temperatura Alta , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Nociceptividade , Estimulação Física , Tempo de Reação/fisiologia
10.
J Neurochem ; 158(6): 1334-1344, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33222198

RESUMO

The cholinergic system is a complex neurotransmitter system with functional involvement at multiple levels of the nervous system including the cerebral cortex, spinal cord, autonomic nervous system, and neuromuscular junction. Anticholinergic medications are among the most prescribed medications, making up one-third to one-half of all medications prescribed for seniors. Recent evidence has linked long-term use of anticholinergic medications and dementia. Emerging evidence implicates the cholinergic system in the regulation of cerebral vasculature as well as neuroinflammation, suggesting that anticholinergic medications may contribute to absolute risk and progression of neurodegenerative diseases. In this review, we explore the involvement of the cholinergic system in various neurodegenerative diseases and the possible detrimental effects of anticholinergic medications on the onset and progression of these disorders. We identified references by searching the PubMed and Cochrane database between January 1990 and September 2019 for English-language animal and human studies including randomized clinical trials (RCTs), meta-analyses, systematic reviews, and observational studies. In addition, we conducted a manual search of reference lists from retrieved studies. Long-term anticholinergic medication exposure may have detrimental consequences beyond well-documented short-term cognitive effects, through a variety of mechanisms either directly impacting cholinergic neurotransmission or through receptors expressed on the vasculature or immune cells, providing a pathophysiological framework for complex interactions across the entire neuroaxis.


Assuntos
Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Antagonistas Colinérgicos/efeitos adversos , Discinesia Tardia/induzido quimicamente , Discinesia Tardia/metabolismo , Animais , Encéfalo/patologia , Neurônios Colinérgicos/efeitos dos fármacos , Neurônios Colinérgicos/metabolismo , Neurônios Colinérgicos/patologia , Humanos , Discinesia Tardia/patologia
11.
Hum Brain Mapp ; 42(12): 3733-3749, 2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-34132441

RESUMO

Neuropathic pain following spinal cord injury involves plastic changes along the whole neuroaxis. Current neuroimaging studies have identified grey matter volume (GMV) and resting-state functional connectivity changes of pain processing regions related to neuropathic pain intensity in spinal cord injury subjects. However, the relationship between the underlying neural processes and pain extent, a complementary characteristic of neuropathic pain, is unknown. We therefore aimed to reveal the neural markers of widespread neuropathic pain in spinal cord injury subjects and hypothesized that those with greater pain extent will show higher GMV and stronger connectivity within pain related regions. Thus, 29 chronic paraplegic subjects and 25 healthy controls underwent clinical and electrophysiological examinations combined with neuroimaging. Paraplegics were demarcated based on neuropathic pain and were thoroughly matched demographically. Our findings indicate that (a) spinal cord injury subjects with neuropathic pain display stronger connectivity between prefrontal cortices and regions involved with sensory integration and multimodal processing, (b) greater neuropathic pain extent, is associated with stronger connectivity between the posterior insular cortex and thalamic sub-regions which partake in the lateral pain system and (c) greater intensity of neuropathic pain is related to stronger connectivity of regions involved with multimodal integration and the affective-motivational component of pain. Overall, this study provides neuroimaging evidence that the pain phenotype of spinal cord injury subjects is related to the underlying function of their resting brain.


Assuntos
Córtex Cerebral/fisiopatologia , Conectoma , Potenciais Evocados/fisiologia , Rede Nervosa/fisiopatologia , Neuralgia/fisiopatologia , Nociceptividade/fisiologia , Paraplegia/fisiopatologia , Traumatismos da Medula Espinal/fisiopatologia , Tálamo/fisiopatologia , Adulto , Idoso , Córtex Cerebral/diagnóstico por imagem , Doença Crônica , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Rede Nervosa/diagnóstico por imagem , Neuralgia/diagnóstico por imagem , Paraplegia/diagnóstico por imagem , Paraplegia/etiologia , Traumatismos da Medula Espinal/complicações , Traumatismos da Medula Espinal/diagnóstico por imagem , Tálamo/diagnóstico por imagem
12.
Artigo em Inglês | MEDLINE | ID: mdl-34039630

RESUMO

OBJECTIVE: To track the interplay between (micro-) structural changes along the trajectories of nociceptive pathways and its relation to the presence and intensity of neuropathic pain (NP) after spinal cord injury (SCI). METHODS: A quantitative neuroimaging approach employing a multiparametric mapping protocol was used, providing indirect measures of myelination (via contrasts such as magnetisation transfer (MT) saturation, longitudinal relaxation (R1)) and iron content (via effective transverse relaxation rate (R2*)) was used to track microstructural changes within nociceptive pathways. In order to characterise concurrent changes along the entire neuroaxis, a combined brain and spinal cord template embedded in the statistical parametric mapping framework was used. Multivariate source-based morphometry was performed to identify naturally grouped patterns of structural variation between individuals with and without NP after SCI. RESULTS: In individuals with NP, lower R1 and MT values are evident in the primary motor cortex and dorsolateral prefrontal cortex, while increases in R2* are evident in the cervical cord, periaqueductal grey (PAG), thalamus and anterior cingulate cortex when compared with pain-free individuals. Lower R1 values in the PAG and greater R2* values in the cervical cord are associated with NP intensity. CONCLUSIONS: The degree of microstructural changes across ascending and descending nociceptive pathways is critically implicated in the maintenance of NP. Tracking maladaptive plasticity unravels the intimate relationships between neurodegenerative and compensatory processes in NP states and may facilitate patient monitoring during therapeutic trials related to pain and neuroregeneration.

13.
Spinal Cord ; 59(5): 529-537, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33594250

RESUMO

STUDY DESIGN: Clinimetric cross-sectional cohort study in adults with paraplegic spinal cord injury (SCI) and neuropathic pain (NP). OBJECTIVE: To assess the reliability of standardized quantitative pain drawings in patients with NP following SCI. SETTING: Hospital-based research facility at the Spinal Cord Injury Center, Balgrist University Hospital, Zurich, Switzerland. METHODS: Twenty individuals with chronic thoracic spinal cord injury and neuropathic pain were recruited from a national and local SCI registry. A thorough clinical examination and pain assessments were performed. Pain drawings were acquired at subsequent timepoints, 13 days (IQR 7.8-14.8) apart, in order to assess test-retest reliability. RESULTS: The average extent [%] and intensity [NRS 0-10] of spontaneous NP were 11.3% (IQR 4.9-35.8) and 5 (IQR 3-7), respectively. Pain extent showed excellent inter-session reliability (intraclass correlation coefficient 0.96). Sensory loss quantified by light touch and pinprick sensation was associated with larger pain extent (rpinprick = -0.47, p = 0.04; rlight touch = -0.64, p < 0.01). CONCLUSION: Assessing pain extent using quantitative pain drawings is readily feasible and reliable in human SCI. Relating information of sensory deficits to the presence of pain may provide distinct insights into the interaction of sensory deafferentation and the development of neuropathic pain after SCI.


Assuntos
Neuralgia , Traumatismos da Medula Espinal , Adulto , Estudos Transversais , Humanos , Neuralgia/diagnóstico , Neuralgia/etiologia , Medição da Dor , Reprodutibilidade dos Testes , Medula Espinal , Traumatismos da Medula Espinal/complicações
14.
J Shoulder Elbow Surg ; 30(2): e60-e68, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32540315

RESUMO

BACKGROUND: The rotator cuff (RC) and the deltoid muscle are 2 synergistic units that enable the functionally demanding movements of the shoulder. A number of biomechanical studies assume similar force contribution of the force couple (RC and deltoid) over the whole range of motion, whereas others propose position-dependent force distribution. There is a lack of in vivo data regarding the deltoid's contribution to shoulder flexion and abduction strength. This study aimed to create reliable in vivo data quantifying the deltoid's contribution to shoulder flexion and abduction strength throughout the range of motion. METHODS: Active range of motion and isometric muscle strength of shoulder abduction and flexion in 0°, 30°, 60°, 90°, and 120° of abduction/flexion as well as internal and external rotation in 0° and 90° of abduction were obtained in 12 healthy volunteers on the dominant arm before and after an ultrasound-guided isolated axillary nerve block. Needle electromyography was performed before and after the block to confirm deltoid paralysis. Radiographs of the shoulder and an ultrasonographic examination were used to exclude relevant shoulder pathologies. RESULTS: Active range of motion showed a minimal to moderate reduction to 94% and 88% of the preintervention value for abduction and flexion. Internal and external rotation amplitude was not impaired. The abduction strength was significantly reduced to 76% at 0° (P = .002) and to 25% at 120° (P < .001) of abduction. The flexion strength was significantly reduced to 64% at 30° (P < .001) and to 30% at 120° (P < .001) of flexion. The strength reduction was linear, depending on the flexion/abduction angle. The maximal external rotation strength showed a significant decrease to 53% in 90° (P < .001) of abduction, whereas in adduction no strength loss was observed (P = .09). The internal rotation strength remained unaffected in 0° and 90° of abduction (P = .28; P = .13). CONCLUSION: The deltoid shows a linear contribution to maximal shoulder strength depending on the abduction or flexion angle, ranging from 24% in 0° to 75% in 120° of abduction and from 11% in 0° to 70% in 120° of flexion, respectively. The overall contribution to abduction strength is higher than to flexion strength. The combination of deltoid muscle and teres minor contributes about 50% to external rotation strength in 90° of abduction. The internal rotation strength is not influenced by a deltoid paralysis. This study highlights the position-dependent contribution of the shoulder muscles to strength development and thereby provides an empirical approach to better understand human shoulder kinematics.


Assuntos
Articulação do Ombro , Ombro , Fenômenos Biomecânicos , Músculo Deltoide , Humanos , Amplitude de Movimento Articular , Rotação , Manguito Rotador , Articulação do Ombro/diagnóstico por imagem
15.
Pain Med ; 21(4): 736-746, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-31216028

RESUMO

OBJECTIVE: Pinprick evoked potentials (PEPs) represent a novel tool to assess the functional integrity of mechano-nociceptive pathways with a potential toward objectifying sensory deficits and gain seen in neurological disorders. The aim of the present study was to evaluate the feasibility and reliability of PEPs with respect to age, stimulation site, and skin type. METHODS: Electroencephalographic responses evoked by two pinprick stimulation intensities (128 mN and 256 mN) applied at three sites (hand dorsum, palmar digit II, and foot dorsum) were recorded in 30 healthy individuals. Test-retest reliability was performed for the vertex negative-positive complex amplitudes, N-latencies, and pain ratings evoked by the 256mN stimulation intensity. RESULTS: Feasibility of PEP acquisition was demonstrated across age groups, with higher proportions of evoked potentials (>85%) for the 256mN stimulation intensity. Reliability analyses, that is, Bland-Altman and intraclass correlation coefficients, revealed poor to excellent reliability upon retest depending on the stimulation sites. CONCLUSIONS: This study highlights the reliability of PEP acquisition from cervical and lumbar segments across clinically representative age groups. Future methodological improvements might further strengthen PEP reliability in order to complement clinical neurophysiology of sensory nerve fibers by a more specific assessment of mechano-nociceptive pathways. Beyond looking at sensory deficits, PEPs may also become applicable to revealing signs of central sensitization, complementing the clinical assessment of mechanical hyperalgesia.


Assuntos
Potenciais Somatossensoriais Evocados/fisiologia , Estimulação Física/métodos , Adulto , Idoso , Eletroencefalografia/métodos , Estudos de Viabilidade , Feminino , Pé/inervação , Mãos/inervação , Voluntários Saudáveis , Humanos , Hiperalgesia/diagnóstico , Hiperalgesia/fisiopatologia , Masculino , Pessoa de Meia-Idade , Reprodutibilidade dos Testes , Adulto Jovem
16.
Pain Med ; 21(11): 2839-2849, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32176283

RESUMO

OBJECTIVE: Descending pain modulation can be experimentally assessed by way of testing conditioned pain modulation. The application of tonic heat as a test stimulus in such paradigms offers the possibility of observing dynamic pain responses, such as adaptation and temporal summation of pain. Here we investigated conditioned pain modulation effects on tonic heat employing participant-controlled temperature, an alternative tonic heat pain assessment. Changes in pain perception are thereby represented by temperature adjustments performed by the participant, uncoupling this approach from direct pain ratings. Participant-controlled temperature has emerged as a reliable and sex-independent measure of tonic heat. METHODS: Thirty healthy subjects underwent a sequential conditioned pain modulation paradigm, in which a cold water bath was applied as the conditioning stimulus and tonic heat as a test stimulus. Subjects were instructed to change the temperature of the thermode in response to variations in perception to tonic heat in order to maintain their initial rating over a two-minute period. Two additional test stimuli (i.e., lower limb noxious withdrawal reflex and pressure pain threshold) were included as positive controls for conditioned pain modulation effects. RESULTS: Participant-controlled temperature revealed conditioned pain modulation effects on temporal summation of pain (P = 0.01). Increased noxious withdrawal reflex thresholds (P = 0.004) and pressure pain thresholds (P < 0.001) in response to conditioning also confirmed inhibitory conditioned pain modulation effects. CONCLUSIONS: The measured interaction between conditioned pain modulation and temporal summation of pain supports the participant-controlled temperature approach as a promising method to explore dynamic inhibitory and facilitatory pain processes previously undetected by rating-based approaches.


Assuntos
Temperatura Alta , Dor , Humanos , Medição da Dor , Limiar da Dor , Temperatura
17.
Spinal Cord ; 57(11): 909-923, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31337870

RESUMO

STUDY DESIGN: Narrative review. OBJECTIVES: To discuss how electrophysiology may contribute to future clinical trials in spinal cord injury (SCI) in terms of: (1) improvement of SCI diagnosis, patient stratification and determination of exclusion criteria; (2) the assessment of adverse events; and (3) detection of therapeutic effects following an intervention. METHODS: An international expert panel for electrophysiological measures in SCI searched and discussed the literature focused on the topic. RESULTS: Electrophysiology represents a valid method to detect, track, and quantify readouts of nerve functions including signal conduction, e.g., evoked potentials testing long spinal tracts, and neural processing, e.g., reflex testing. Furthermore, electrophysiological measures can predict functional outcomes and thereby guide rehabilitation programs and therapeutic interventions for clinical studies. CONCLUSION: Objective and quantitative measures of sensory, motor, and autonomic function based on electrophysiological techniques are promising tools to inform and improve future SCI trials. Complementing clinical outcome measures, electrophysiological recordings can improve the SCI diagnosis and patient stratification, as well as the detection of both beneficial and adverse events. Specifically composed electrophysiological measures can be used to characterize the topography and completeness of SCI and reveal neuronal integrity below the lesion, a prerequisite for the success of any interventional trial. Further validation of electrophysiological tools with regard to their validity, reliability, and sensitivity are needed in order to become routinely applied in clinical SCI trials.


Assuntos
Potencial Evocado Motor/fisiologia , Potenciais Somatossensoriais Evocados/fisiologia , Traumatismos da Medula Espinal/diagnóstico , Traumatismos da Medula Espinal/fisiopatologia , Ensaios Clínicos como Assunto/métodos , Fenômenos Eletrofisiológicos/fisiologia , Humanos , Seleção de Pacientes , Recuperação de Função Fisiológica/fisiologia , Reflexo/fisiologia , Traumatismos da Medula Espinal/terapia
18.
J Pain Res ; 17: 989-1003, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38505501

RESUMO

Purpose: The pathophysiological mechanisms underlying the development of chronic pain in complex regional pain syndrome (CRPS) are diverse and involve both peripheral and central changes in pain processing, such as sensitization of the nociceptive system. The aim of this study was to objectively distinguish the specific changes occurring at both peripheral and central levels in nociceptive processing in individuals with chronic CRPS type I. Patients and Methods: Nineteen individuals with chronic CRPS type I and 16 age- and sex-matched healthy controls (HC) were recruited. All individuals underwent a clinical examination and pain assessment in the most painful limb, the contralateral limb, and a pain-free control area to distinguish between peripheral and central mechanisms. Contact-heat evoked potentials (CHEPs) were recorded after heat stimulation of the three different areas and amplitudes and latencies were analyzed. Additionally, quantitative sensory testing (QST) was performed in all three areas. Results: Compared to HC, CHEP amplitudes in CRPS were only increased after stimulation of the painful area (p=0.025), while no increases were observed for the pain-free control area (p=0.14). None of the CHEP latencies were different between the two cohorts (all p>0.23). Furthermore, individuals with CRPS showed higher pain ratings after stimulation of the painful limb compared to their contralateral limb (p=0.013). Lastly, compared to HC, mechanical (p=0.012) and thermal (p=0.046) sensitivity was higher in the painful area of the CRPS cohort. Conclusion: This study provides neurophysiological evidence supporting an intact thermo-nociceptive pathway with signs of peripheral sensitization, such as hyperexcitable primary afferent nociceptors, in individuals with CRPS type I. This is further supported by the observation of mechanical and thermal gain of sensation only in the painful limb. Additionally, the increased CHEP amplitudes might be related to fear-induced alterations of nociceptive processing.

19.
J Orthop Res ; 42(1): 164-171, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37309814

RESUMO

Squatting is a common daily activity and fundamental exercise in resistance training and closed kinetic chain programs. The aim of this study was to investigate the effects of an experimentally induced weakness of the gluteal muscles on joint kinematics, reactions forces (JRFs), and dynamic balance performance during deep bilateral squats in healthy young adults. Ten healthy adults received sequential blocks of (1) branch of the superior gluteal nerve to the tensor fasciae latae (SGNtfl) muscle, (2) superior gluteal nerve (SGN), and (3) inferior gluteal nerve (IGN) on the dominant right leg. At the control condition and following each block, the participants were instructed to perform deep bilateral squats standing on two force plates. Hip, knee, ankle, and pelvis kinematics did not differ significantly following iatrogenic weakness of gluteal muscles. The most important finding was the significant differences in JRFs following SGN and IGN block, with the affected hip, patellofemoral, and ankle joint demonstrating lower JRFs, whereas the contralateral joints demonstrated significantly higher JRFs, especially the patellofemoral joint which demonstrated an average maximum difference of 1.43 x body weight compared with the control condition. When performing a deep bilateral leg squat under SGN and IGN block, the subjects demonstrated an increased center of pressure (CoP) range and standard deviation (SD) in mediolateral compared with the control condition. These results imply that squat performance changes significantly following weakness of gluteal muscles and should be considered when assessing and training athletes or patients with these injuries.


Assuntos
Articulação do Quadril , Músculo Esquelético , Adulto Jovem , Humanos , Fenômenos Biomecânicos , Articulação do Quadril/fisiologia , Músculo Esquelético/fisiologia , Articulação do Joelho/fisiologia , Nádegas/fisiologia , Debilidade Muscular/etiologia
20.
Pain Rep ; 9(4): e1166, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38910867

RESUMO

Introduction: In 85% of patients with chronic low back pain (CLBP), no specific pathoanatomical cause can be identified. Besides primary peripheral drivers within the lower back, spinal or supraspinal sensitization processes might contribute to the patients' pain. Objectives: The present study conceptualized the most painful area (MP) of patients with nonspecific CLBP as primarily affected area and assessed signs of peripheral, spinal, and supraspinal sensitization using quantitative sensory testing (QST) in MP, a pain-free area adjacent to MP (AD), and a remote, pain-free control area (CON). Methods: Fifty-nine patients with CLBP (51 years, SD = 16.6, 22 female patients) and 35 pain-free control participants individually matched for age, sex, and testing areas (49 years, SD = 17.5, 19 female participants) underwent a full QST protocol in MP and a reduced QST protocol assessing sensory gain in AD and CON. Quantitative sensory testing measures, except paradoxical heat sensations and dynamic mechanical allodynia (DMA), were Z-transformed to the matched control participants and tested for significance using Z-tests (α = 0.001). Paradoxical heat sensations and DMA occurrence were compared between cohorts using Fisher's exact tests (α = 0.05). The same analyses were performed with a high-pain and a low-pain CLBP subsample (50% quantile). Results: Patients showed cold and vibration hypoesthesia in MP (all Ps < 0.001) and mechanical hyperalgesia (P < 0.001) and more frequent DMA (P = 0.044) in AD. The results were mainly driven by the high-pain CLBP subsample. In CON, no sensory alterations were observed. Conclusion: Mechanical hyperalgesia and DMA adjacent to but not within MP, the supposedly primarily affected area, might reflect secondary hyperalgesia originating from spinal sensitization in patients with CLBP.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA