Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
IEEE Trans Nucl Sci ; 55(3): 975-983, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19096731

RESUMO

Partially collimated PET systems have less collimation than conventional 2-D systems and have been shown to offer count rate improvements over 2-D and 3-D systems. Despite this potential, previous efforts have not established image-based improvements with partial collimation and have not customized the reconstruction method for partially collimated data. This work presents an image reconstruction method tailored for partially collimated data. Simulated and measured sensitivity patterns are presented and provide a basis for modification of a fully 3-D reconstruction technique. The proposed method uses a measured normalization correction term to account for the unique sensitivity to true events. This work also proposes a modified scatter correction based on simulated data. Measured image quality data supports the use of the normalization correction term for true events, and suggests that the modified scatter correction is unnecessary.

2.
J Med Imaging (Bellingham) ; 4(1): 011002, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27921073

RESUMO

We have previously developed a convergent penalized likelihood (PL) image reconstruction algorithm using the relative difference prior (RDP) and showed that it achieves more accurate lesion quantitation compared to ordered subsets expectation maximization (OSEM). We evaluated the detectability of low-contrast liver and lung lesions using the PL-RDP algorithm compared to OSEM. We performed a two-alternative forced choice study using a channelized Hotelling observer model that was previously validated against human observers. Lesion detectability showed a stronger dependence on lesion size for PL-RDP than OSEM. Lesion detectability was improved using time-of-flight (TOF) reconstruction, with greater benefit for the liver compared to the lung and with increasing benefit for decreasing lesion size and contrast. PL detectability was statistically significantly higher than OSEM for 20 mm liver lesions when contrast was [Formula: see text] ([Formula: see text]), and TOF PL detectability was statistically significantly higher than TOF OSEM for 15 and 20 mm liver lesions with contrast [Formula: see text] and [Formula: see text], respectively. For all other cases, there was no statistically significant difference between PL and OSEM ([Formula: see text]). For the range of studied lesion properties, lesion detectability using PL-RDP was equivalent or improved compared to using OSEM.

3.
Phys Med Biol ; 60(15): 5733-51, 2015 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-26158503

RESUMO

Ordered subset expectation maximization (OSEM) is the most widely used algorithm for clinical PET image reconstruction. OSEM is usually stopped early and post-filtered to control image noise and does not necessarily achieve optimal quantitation accuracy. As an alternative to OSEM, we have recently implemented a penalized likelihood (PL) image reconstruction algorithm for clinical PET using the relative difference penalty with the aim of improving quantitation accuracy without compromising visual image quality. Preliminary clinical studies have demonstrated visual image quality including lesion conspicuity in images reconstructed by the PL algorithm is better than or at least as good as that in OSEM images. In this paper we evaluate lesion quantitation accuracy of the PL algorithm with the relative difference penalty compared to OSEM by using various data sets including phantom data acquired with an anthropomorphic torso phantom, an extended oval phantom and the NEMA image quality phantom; clinical data; and hybrid clinical data generated by adding simulated lesion data to clinical data. We focus on mean standardized uptake values and compare them for PL and OSEM using both time-of-flight (TOF) and non-TOF data. The results demonstrate improvements of PL in lesion quantitation accuracy compared to OSEM with a particular improvement in cold background regions such as lungs.


Assuntos
Algoritmos , Processamento de Imagem Assistida por Computador/métodos , Funções Verossimilhança , Hepatopatias/diagnóstico por imagem , Imagens de Fantasmas , Tomografia por Emissão de Pósitrons/métodos , Antropometria , Teorema de Bayes , Humanos , Interpretação de Imagem Assistida por Computador , Hepatopatias/patologia , Probabilidade
4.
IEEE Trans Med Imaging ; 29(3): 938-49, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20199927

RESUMO

Accurate system modeling in tomographic image reconstruction has been shown to reduce the spatial variance of resolution and improve quantitative accuracy. System modeling can be improved through analytic calculations, Monte Carlo simulations, and physical measurements. The purpose of this work is to improve clinical fully-3-D reconstruction without substantially increasing computation time. We present a practical method for measuring the detector blurring component of a whole-body positron emission tomography (PET) system to form an approximate system model for use with fully-3-D reconstruction. We employ Monte Carlo simulations to show that a non-collimated point source is acceptable for modeling the radial blurring present in a PET tomograph and we justify the use of a Na22 point source for collecting these measurements. We measure the system response on a whole-body scanner, simplify it to a 2-D function, and incorporate a parameterized version of this response into a modified fully-3-D OSEM algorithm. Empirical testing of the signal versus noise benefits reveal roughly a 15% improvement in spatial resolution and 10% improvement in contrast at matched image noise levels. Convergence analysis demonstrates improved resolution and contrast versus noise properties can be achieved with the proposed method with similar computation time as the conventional approach. Comparison of the measured spatially variant and invariant reconstruction revealed similar performance with conventional image metrics. Edge artifacts, which are a common artifact of resolution-modeled reconstruction methods, were less apparent in the spatially variant method than in the invariant method. With the proposed and other resolution-modeled reconstruction methods, edge artifacts need to be studied in more detail to determine the optimal tradeoff of resolution/contrast enhancement and edge fidelity.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Tomografia por Emissão de Pósitrons/métodos , Algoritmos , Artefatos , Encéfalo/fisiologia , Simulação por Computador , Meios de Contraste , Humanos , Método de Monte Carlo , Distribuição Normal , Imagens de Fantasmas , Imagem Corporal Total
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA