Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Environ Sci Technol ; 57(2): 1071-1079, 2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36598768

RESUMO

Micro- and nanoscopic X-ray techniques were used to investigate the relationship between uranium (U) tissue distributions and adverse effects to the digestive tract of aquatic model organism Daphnia magna following uranium nanoparticle (UNP) exposure. X-ray absorption computed tomography measurements of intact daphnids exposed to sublethal concentrations of UNPs or a U reference solution (URef) showed adverse morphological changes to the midgut and the hepatic ceca. Histological analyses of exposed organisms revealed a high proportion of abnormal and irregularly shaped intestinal epithelial cells. Disruption of the hepatic ceca and midgut epithelial tissues implied digestive functions and intestinal barriers were compromised. Synchrotron-based micro X-ray fluorescence (XRF) elemental mapping identified U co-localized with morphological changes, with substantial accumulation of U in the lumen as well as in the epithelial tissues. Utilizing high-resolution nano-XRF, 400-1000 nm sized U particulates could be identified throughout the midgut and within hepatic ceca cells, coinciding with tissue damages. The results highlight disruption of intestinal function as an important mode of action of acute U toxicity in D. magna and that midgut epithelial cells as well as the hepatic ceca are key target organs.


Assuntos
Urânio , Poluentes Químicos da Água , Animais , Raios X , Daphnia , Urânio/toxicidade , Fluorescência , Síncrotrons , Trato Gastrointestinal , Poluentes Químicos da Água/toxicidade
2.
Environ Sci Technol ; 56(8): 5081-5089, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35378039

RESUMO

A combination of synchrotron radiation-based elemental imaging, in vivo redox status analysis, histology, and toxic responses was used to investigate the uptake, biodistribution, and adverse effects of Ce nanoparticles (CeO2 NP; 10 nm; 0.5-34.96 mg Ce L-1) or Ce(NO3)3 (2.3-26 mg Ce L-1) in Caenorhabditis elegans. Elemental mapping of the exposed nematodes revealed Ce uptake in the alimentary canal prior to depuration. Retention of CeO2 NPs was low compared to that of Ce(NO3)3 in depurated individuals. X-ray fluorescence (XRF) mapping showed that Ce translocation was confined to the pharyngeal valve and foregut. Ce(NO3)3 exposure significantly decreased growth, fertility, and reproduction, caused slightly reduced fecundity. XRF mapping and histological analysis revealed severe tissue deformities colocalized with retained Ce surrounding the pharyngeal valve. Both forms of Ce activated the sod-1 antioxidant defense, particularly in the pharynx, whereas no significant effects on the cellular redox balance were identified. The CeO2 NP-induced deformities did not appear to impair the pharyngeal function or feeding ability as growth effects were restricted to Ce(NO3)3 exposure. The results demonstrate the utility of integrated submicron-resolution SR-based XRF elemental mapping of tissue-specific distribution and adverse effect analysis to obtain robust toxicological evaluations of metal-containing contaminants.


Assuntos
Cério , Nanopartículas Metálicas , Nanopartículas , Animais , Caenorhabditis elegans , Fluorescência , Humanos , Nanopartículas Metálicas/toxicidade , Faringe , Síncrotrons , Distribuição Tecidual , Raios X
3.
ACS Nano ; 17(6): 5296-5305, 2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-36921214

RESUMO

A combination of synchrotron-based elemental analysis and acute toxicity tests was used to investigate the biodistribution and adverse effects in Daphnia magna exposed to uranium nanoparticle (UNP, 3-5 nm) suspensions or to uranium reference (Uref) solutions. Speciation analysis revealed similar size distributions between exposures, and toxicity tests showed comparable acute effects (UNP LC50: 402 µg L-1 [336-484], Uref LC50: 268 µg L-1 [229-315]). However, the uranium body burden was 3- to 5-fold greater in UNP-exposed daphnids, and analysis of survival as a function of body burden revealed a ∼5-fold higher specific toxicity from the Uref exposure. High-resolution X-ray fluorescence elemental maps of intact, whole daphnids from sublethal, acute exposures of both treatments revealed high uranium accumulation onto the gills (epipodites) as well as within the hepatic ceca and the intestinal lumen. Uranium uptake into the hemolymph circulatory system was inferred from signals observed in organs such as the heart and the maxillary gland. The substantial uptake in the maxillary gland and the associated nephridium suggests that these organs play a role in uranium removal from the hemolymph and subsequent excretion. Uranium was also observed associated with the embryos and the remnants of the chorion, suggesting uptake in the offspring. The identification of target organs and tissues is of major importance to the understanding of uranium and UNP toxicity and exposure characterization that should ultimately contribute to reducing uncertainties in related environmental impact and risk assessments.


Assuntos
Urânio , Poluentes Químicos da Água , Animais , Raios X , Daphnia/química , Urânio/toxicidade , Síncrotrons , Distribuição Tecidual , Toxicocinética , Imagem Óptica , Poluentes Químicos da Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA