Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Conserv Biol ; 38(4): e14233, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38155511

RESUMO

Conservation translocations are becoming common conservation practice, so there is an increasing need to understand the drivers of plant translocation performance through reviews of cases at global and regional levels. The establishment of the Italian Database of Plant Translocation (IDPlanT) provides the opportunity to review the techniques used in 186 plant translocation cases performed in the last 50 years in the heart of the Mediterranean Biodiversity Hotspot. We described techniques and information available in IDPlanT and used these data to identify drivers of translocation outcomes. We tested the effect of 15 variables on survival of translocated propagules as of the last monitoring date with binomial logistic mixed-effect models. Eleven variables significantly affected survival of transplants: life form, site protection, material source, number of source populations, propagation methods, propagule life stage, planting methods, habitat suitability assessment, site preparation, aftercare, and costs. The integration of vegetation studies in the selection of suitable planting sites significantly increased the success of translocation efforts. Although posttranslocation watering had a generally positive effect on translocation outcome, other aftercare techniques did not always increase transplant survival. Finally, we found that how funds were spent appeared to be more important than the actual amount spent. Plant translocations in Italy and in the Mediterranean area should account for the complexity of speciation, gene flow, and plant migrations that has led to local adaptations and has important implications for the choice and constitution of source material.


Mejores prácticas, errores y perspectivas tras medio siglo de reubicaciones botánicas en Italia Resumen Las reubicaciones son una práctica cada vez más común en la conservación, por lo que hay una necesidad creciente por entender los factores del desempeño de las reubicaciones botánicas por medio de la revisión de casos regionales y globales. La creación de la Italian Database of Plant Translocation (IDPlanT) proporciona una oportunidad para revisar las técnicas usadas para los casos de reubicación de 186 plantas realizados durante los últimos cincuenta años en el centro del punto caliente de biodiversidad mediterránea. Describimos las técnicas y la información disponible en IDPlanT y usamos estos datos para identificar los factores involucrados en los resultados de las reubicaciones. Usamos modelos logísticos binomiales de efectos mixtos para analizar el efecto de 15 variables sobre la supervivencia de los propágulos reubicados a partir de la última fecha de monitoreo. Once de las variables afectaron de manera significativa la supervivencia de las plantas: forma de vida, protección del sitio, fuente de materiales, cantidad de poblaciones originarias, método de propagación, etapa de vida del propágulo, método de siembra, evaluación de idoneidad del hábitat, preparación del sitio, cuidados posteriores y costos. La integración de los estudios botánicos a la selección de los sitios idóneos para plantar aumentó el éxito de los esfuerzos de reubicación. Aunque el riego posterior a la reubicación tuvo un efecto positivo general sobre el resultado, las otras técnicas de cuidado posterior no siempre incrementaron la supervivencia de la planta reubicada. Por último, descubrimos que parece ser más importante cómo se utilizan los fondos que la cantidad actual empleada. Las reubicaciones botánicas en Italia y en el área del Mediterráneo deben considerar lo complejo de la especiación, el flujo génico y la migración botánica que han derivado en adaptaciones locales y que han tenido implicaciones importantes para la elección y constitución del material de origen.


Assuntos
Conservação dos Recursos Naturais , Itália , Conservação dos Recursos Naturais/métodos , Plantas/genética , Biodiversidade , Ecossistema
2.
Conserv Biol ; 34(2): 303-313, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31329316

RESUMO

The alarming current and predicted species extinction rates have galvanized conservationists in their efforts to avoid future biodiversity losses, but for species extinct in the wild, few options exist. We posed the questions, can these species be restored, and, if so, what role can ex situ plant collections (i.e., botanic gardens, germplasm banks, herbaria) play in the recovery of plant genetic diversity? We reviewed the relevant literature to assess the feasibility of recovering lost plant genetic diversity with using ex situ material and the probability of survival of subsequent translocations. Thirteen attempts to recover species extinct in the wild were found, most of which used material preserved in botanic gardens (12) and seed banks (2). One case of a locally extirpated population was recovered from herbarium material. Eight (60%) of these cases were successful or partially successful translocations of the focal species or population; the other 5 failed or it was too early to determine the outcome. Limiting factors of the use of ex situ source material for the restoration of plant genetic diversity in the wild include the scarcity of source material, low viability and reduced longevity of the material, low genetic variation, lack of evolution (especially for material stored in germplasm banks and herbaria), and socioeconomic factors. However, modern collecting practices present opportunities for plant conservation, such as improved collecting protocols and improved cultivation and storage conditions. Our findings suggest that all types of ex situ collections may contribute effectively to plant species conservation if their use is informed by a thorough understanding of the aforementioned problems. We conclude that the recovery of plant species currently classified as extinct in the wild is not 100% successful, and the possibility of successful reintroduction should not be used to justify insufficient in situ conservation.


Colecciones Ex Situ y su Potencial para la Restauración de Plantas Extintas Resumen Las alarmantes tasas de extinción actuales y pronosticadas han incitado a los conservacionistas a esforzarse para evitar las futuras pérdidas de biodiversidad, pero para las especies que ya se encuentran extintas en vida silvestre existen pocas opciones. Nos preguntamos si estas especies pueden ser restauradas, y de ser así, qué papel pueden desempeñar las colecciones ex situ de plantas (es decir, jardines botánicos, bancos de germoplasma, herbarios) en la recuperación de la diversidad genética de las plantas. Revisamos la literatura relevante para evaluar la factibilidad de la recuperación de la diversidad genética perdida y la probabilidad de supervivencia subsecuente de las reubicaciones. Encontramos 13 intentos por recuperar especies extintas en vida silvestre, la mayoría de los cuales usó material preservado en jardines botánicos (12) y en bancos de semillas (2). También hubo un caso de una población eliminada localmente que fue recuperada con material de un herbario. Ocho (60%) de estos casos fueron reubicaciones exitosas o parcialmente exitosas de la especie o población focal; los otros cinco fallaron o era demasiado pronto para poder determinar el resultado. Los factores que limitan el uso de material proveniente de colecciones ex situ para la restauración de la diversidad genética de las plantas en vida silvestre incluyen la escasez de material original, la baja viabilidad y la longevidad reducida del material, la baja variación genética, la falta de evolución (especialmente para el material almacenado en herbarios y bancos de germoplasma) y los factores socioeconómicos. A pesar de esto, las prácticas modernas de colección representan una oportunidad para la conservación de las plantas, como los protocolos mejorados de recolección y las condiciones acrecentadas de cultivo y almacenamiento. Nuestros hallazgos sugieren que todos los tipos de colecciones ex situ pueden contribuir efectivamente a la conservación de especies de plantas si su uso está respaldado por un entendimiento a fondo de los problemas antes mencionados. Concluimos que la recuperación de especies de plantas que actualmente están clasificadas como extintas en vida silvestre no es 100% exitosa y que la posibilidad de una reintroducción exitosa no debería utilizarse para justificar una conservación in situ insuficiente.


Assuntos
Conservação dos Recursos Naturais , Banco de Sementes , Biodiversidade , Jardinagem , Plantas
3.
Ann Bot ; 116(6): 907-16, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26133689

RESUMO

BACKGROUND AND AIMS: Glacier foreland plants are highly threatened by global warming. Regeneration from seeds on deglaciated terrain will be crucial for successful migration and survival of these species, and hence a better understanding of the impacts of climate change on seedling recruitment is urgently needed to predict future plant persistence in these environments. This study presents the first field evidence of the impact of climate change on recruitment success of glacier foreland plants. METHODS: Seeds of eight foreland species were sown on a foreland site at 2500 m a.s.l., and at a site 400 m lower in altitude to simulate a 2·7 °C increase in mean annual temperature. Soil from the site of origin was used to reproduce the natural germination substrate. Recruitment success, temperature and water potential were monitored for 2 years. The response of seed germination to warming was further investigated in the laboratory. KEY RESULTS: At the glacier foreland site, seedling emergence was low (0 to approx. 40 %) and occurred in summer in all species after seeds had experienced autumn and winter seasons. However, at the warmer site there was a shift from summer to autumn emergence in two species and a significant increase of summer emergence (13-35 % higher) in all species except two. Survival and establishment was possible for 60-75 % of autumn-emerged seedlings and was generally greater under warmer conditions. Early snowmelt in spring caused the main ecological factors enhancing the recruitment success. CONCLUSIONS: The results suggest that warming will influence the recruitment of glacier foreland species primarily via the extension of the snow-free period in spring, which increases seedling establishment and results in a greater resistance to summer drought and winter extremes. The changes in recruitment success observed here imply that range shifts or changes in abundance are possible in a future warmer climate, but overall success may be dependent on interactions with shifts in other components of the plant community.


Assuntos
Mudança Climática , Desenvolvimento Vegetal , Altitude , Secas , Germinação , Aquecimento Global , Camada de Gelo , Plantas , Estações do Ano , Plântula/crescimento & desenvolvimento , Sementes/crescimento & desenvolvimento , Solo , Temperatura , Água/fisiologia
4.
Plants (Basel) ; 13(7)2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38611559

RESUMO

The growing interest in maize landraces over the past two decades has led to the need to characterize the Italian maize germplasm. In Italy, hundreds of maize landraces have been developed, but only a few of them have been genetically characterized, and even fewer are currently employed in agriculture or for breeding purposes. In the present study, 13 maize landraces of the west Emilia-Romagna region were morphologically and genetically characterized. These accessions were sampled in 1954 from three provinces, Modena, Parma, and Piacenza, during the characterization project of Italian maize landraces. The morphological characterization of these 13 accessions was performed according to the UPOV protocol CPVO/TP2/3, examining 34 phenotypic traits. A total of 820 individuals were genotyped with 10 SSR markers. The genetic characterization revealed 74 different alleles, a FST mean value of 0.13, and a Nm mean of 1.73 over all loci. Moreover, AMOVA analysis disclosed a low degree of differentiation among accessions, with only 13% of genetic variability found between populations, supporting PCoA analysis results, where the first two coordinates explained only 16% of variability. Structure analysis, supported by PCoA, showed that only four accessions were clearly distinguished for both K = 4 and 6. Italian landraces can be useful resources to be employed in maize breeding programs for the development of new varieties, adapted to different environmental conditions, in order to increase crop resilience and expand the maize cultivation area.

5.
Ann Bot ; 110(1): 155-64, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22596094

RESUMO

BACKGROUND AND AIMS: Despite the considerable number of studies on the impacts of climate change on alpine plants, there have been few attempts to investigate its effect on regeneration. Recruitment from seeds is a key event in the life-history of plants, affecting their spread and evolution and seasonal changes in climate will inevitably affect recruitment success. Here, an investigation was made of how climate change will affect the timing and the level of germination in eight alpine species of the glacier foreland. METHODS: Using a novel approach which considered the altitudinal variation of temperature as a surrogate for future climate scenarios, seeds were exposed to 12 different cycles of simulated seasonal temperatures in the laboratory, derived from measurements at the soil surface at the study site. KEY RESULTS: Under present climatic conditions, germination occurred in spring, in all but one species, after seeds had experienced autumn and winter seasons. However, autumn warming resulted in a significant increase in germination in all but two species. In contrast, seed germination was less sensitive to changes in spring and/or winter temperatures, which affected only three species. CONCLUSIONS: Climate warming will lead to a shift from spring to autumn emergence but the extent of this change across species will be driven by seed dormancy status. Ungerminated seeds at the end of autumn will be exposed to shorter winter seasons and lower spring temperatures in a future, warmer climate, but these changes will only have a minor impact on germination. The extent to which climate change will be detrimental to regeneration from seed is less likely to be due to a significant negative effect on germination per se, but rather to seedling emergence in seasons that the species are not adapted to experience. Emergence in autumn could have major implications for species currently adapted to emerge in spring.


Assuntos
Germinação/fisiologia , Aquecimento Global , Sementes/fisiologia , Itália , Dormência de Plantas/fisiologia , Fatores de Tempo
6.
Ann Bot ; 107(1): 171-9, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21081585

RESUMO

BACKGROUND AND AIMS: Alpine plants are considered one of the groups of species most sensitive to the direct and indirect threats to ecosystems caused by land use and climate change. Collecting and banking seeds of plant species is recognized as an effective tool for providing propagating material to re-establish wild plant populations and for habitat repair. However, seeds from cold wet environments have been shown to be relatively short lived in storage, and therefore successful long-term seed conservation for alpine plants may be difficult. Here, the life spans of 69 seed lots representing 63 related species from alpine and lowland locations from northern Italy are compared. METHODS: Seeds were placed into experimental storage at 45 °C and 60 % relative humidity (RH) and regularly sampled for germination. The time taken in storage for viability to fall to 50 % (p(50)) was determined using probit analysis and used as a measure of relative seed longevity between seed lots. KEY RESULTS: Across species, p(50) at 45 °C and 60 % RH varied from 4·7 to 95·5 d. Seed lots from alpine populations/species had significantly lower p(50) values compared with those from lowland populations/species; the lowland seed lots showed a slower rate of loss of germinability, higher initial seed viability, or both. Seeds were progressively longer lived with increased temperature and decreased rainfall at the collecting site. CONCLUSIONS: Seeds of alpine plants are short lived in storage compared with those from lowland populations/related taxa. The lower resistance to ageing in seeds of alpine plants may arise from low selection pressure for seed resistance to ageing and/or damage incurred during seed development due to the cool wet conditions of the alpine climate. Long-term seed conservation of several alpine species using conventional seed banking methods will be problematic.


Assuntos
Desenvolvimento Vegetal , Sementes/fisiologia , Altitude , Mudança Climática , Conservação dos Recursos Naturais , Germinação/fisiologia , Itália , Longevidade
7.
Sci Total Environ ; 665: 1046-1052, 2019 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-30893736

RESUMO

Global plant diversity is at risk due to anthropogenic changes to ecosystems, but given severely limited conservation resources, a reliable prioritisation strategy for species and sites is needed. Our objective was to identify key areas for conserving the phylogenetic diversity (PD) of threatened vascular plants in Italy, one of the most species-rich regions in the Mediterranean Basin. We used spatial data and the conservation status of 995 threatened vascular plants and applied a phylogenetically informed spatial planning to minimize conservation costs. We then determined the degree of overlap with existing protected areas and evaluated whether this PD-based prioritisation of areas provides adequate protection for threatened phylogenetically distinctive species (EDGE). The cost-effective procedure identified as priority for conservation 12% of the study territory, while achieving over 90% of conservation targets (total PD). We showed that priority areas and protected areas are moderately spatially mismatched. We also showed that not all top-EDGE species were met by the procedure applied, hence we conclude that the PD-based model indicated key areas for protection, but nevertheless additional attention is needed to protect top-EDGE species. This study represents one of the most comprehensive analyses, to date, for the conservation of the native flora in the Mediterranean, incorporating both spatial distribution and evolutionary relationships. Our work on the prioritisation of threatened plant species across Italy can serve as a guide for future conservation applications.


Assuntos
Biodiversidade , Conservação dos Recursos Naturais/métodos , Análise Espacial , Traqueófitas , Conservação dos Recursos Naturais/economia , Análise Custo-Benefício , Embriófitas , Espécies em Perigo de Extinção , Itália , Região do Mediterrâneo , Filogenia , Técnicas de Planejamento
8.
Ann Bot ; 101(3): 421-33, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18158307

RESUMO

BACKGROUND AND AIMS: Plant evolution is well known to be frequently associated with remarkable changes in genome size and composition; however, the knowledge of long-term evolutionary dynamics of these processes still remains very limited. Here a study is made of the fine dynamics of quantitative genome evolution in Festuca (fescue), the largest genus in Poaceae (grasses). METHODS: Using flow cytometry (PI, DAPI), measurements were made of DNA content (2C-value), monoploid genome size (Cx-value), average chromosome size (C/n-value) and cytosine + guanine (GC) content of 101 Festuca taxa and 14 of their close relatives. The results were compared with the existing phylogeny based on ITS and trnL-F sequences. KEY RESULTS: The divergence of the fescue lineage from related Poeae was predated by about a 2-fold monoploid genome and chromosome size enlargement, and apparent GC content enrichment. The backward reduction of these parameters, running parallel in both main evolutionary lineages of fine-leaved and broad-leaved fescues, appears to diverge among the existing species groups. The most dramatic reductions are associated with the most recently and rapidly evolving groups which, in combination with recent intraspecific genome size variability, indicate that the reduction process is probably ongoing and evolutionarily young. This dynamics may be a consequence of GC-rich retrotransposon proliferation and removal. Polyploids derived from parents with a large genome size and high GC content (mostly allopolyploids) had smaller Cx- and C/n-values and only slightly deviated from parental GC content, whereas polyploids derived from parents with small genome and low GC content (mostly autopolyploids) generally had a markedly increased GC content and slightly higher Cx- and C/n-values. CONCLUSIONS: The present study indicates the high potential of general quantitative characters of the genome for understanding the long-term processes of genome evolution, testing evolutionary hypotheses and their usefulness for large-scale genomic projects. Taken together, the results suggest that there is an evolutionary advantage for small genomes in Festuca.


Assuntos
Evolução Molecular , Festuca/genética , Genoma de Planta , Filogenia , Poliploidia , Retroelementos
9.
PeerJ ; 6: e5123, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30013830

RESUMO

Crop landraces are fundamental resources to increase the eroded genepool of modern crops in order to adapt agriculture to future challenges; plus, they are of immeasurable heritage and cultural value. Between the 1940s and the 1960s open-pollinated varieties (OPVs) of flint and semi-flint maize in Europe were almost completely replaced by high-yielding hybrid dent cultivars selected in North America. No comprehensive assessment was performed after the 1950s to understand which maize genetic resources survived genetic erosion in northern Italy, an area characterized by a high degree of landraces extinction and introgression, intensive hybrid dent monocultures, as well as being one of the hotspots of maize cultivation at a continental level. Among these landraces, beaked maize represents a peculiar case study for assessing the survival of OPVs in intensive cropping systems. By means of ethnobotanical and literature surveys, the history of Zea mays subsp. mays Rostrata Group and its current distribution were reconstructed. It emerged that beaked maize originated in the study area and it is one of the oldest genepools available not subjected to formal crop improvement. We identified 28 landraces of beaked maize currently cultivated, 18 here recorded for the first time. The cultivation of more than half of the 28 landraces has continued throughout the last 80 years in a few fragmented localities that can be regarded as "refugia". The survival of these landraces from substitution with high-yielding cultivars and unidirectional introgression has been mainly due to active on-farm conservation performed by custodian farmers and secondarily to cultivation in isolated areas (e.g., mountain valleys). After decades of genetic erosion, beaked maize has since the late 1990s experienced a revival, in terms of an increasing number of cultivation localities and the level of product commercialization. This process is mostly spontaneous and only occasionally mediated by governmental institutions; it is linked to the rediscovery of local food products, in this case mainly polenta, a dish made of corn flour, which used to be the staple food across northern Italy. The ex situ conservation of beaked maize and on-farm measures put in place by the farmers to prevent introgression are also assessed. Further research and collecting missions are needed to provide an inventory of open-pollinated landraces of other landrace groups that have survived genetic erosion in Europe. To meet this aim, extensive ethnobotanical surveys, such as the one performed here, are very powerful tools in detecting these genetic resources.

10.
Ecol Evol ; 8(1): 150-161, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29321859

RESUMO

Understanding the key aspects of plant regeneration from seeds is crucial in assessing species assembly to their habitats. However, the regenerative traits of seed dormancy and germination are underrepresented in this context. In the alpine zone, the large species and microhabitat diversity provide an ideal context to assess habitat-related regenerative strategies. To this end, seeds of 53 species growing in alpine siliceous and calcareous habitats (6230 and 6170 of EU Directive 92/43, respectively) were exposed to different temperature treatments under controlled laboratory conditions. Germination strategies in each habitat were identified by clustering with k-means. Then, phylogenetic least squares correlations (PGLS) were fitted to assess germination and dormancy differences between species' main habitat (calcareous and siliceous), microhabitat (grasslands, heaths, rocky, and species with no specific microhabitats), and chorology (arctic-alpine and continental). Calcareous and siliceous grasslands significantly differ in their germination behaviour with a slow, mostly overwinter germination and high germination under all conditions, respectively. Species with high overwinter germination occurs mostly in heaths and have an arctic-alpine distribution. Meanwhile, species with low or high germinability in general inhabit in grasslands or have no specific microhabitat (they belong to generalist), respectively. Alpine species use different germination strategies depending on habitat provenance, species' main microhabitat, and chorotype. Such differences may reflect adaptations to local environmental conditions and highlight the functional role of germination and dormancy in community ecology.

11.
Sci Rep ; 6: 28542, 2016 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-27345374

RESUMO

Assisted colonization is one way of facilitating range shifts for species that are restricted in their ability to move in response to climate change. Here we conceptualize and apply a new decision framework for modelling assisted colonization of plant species prior to in situ realization. Three questions were examined: a) Is species translocation useful in a certain area? b) where, and c) how long will it be successful in the future? Applying our framework to Carex foetida in Italy at the core of its distribution and its southern edge revealed that assisted colonization could be successful in short-term (2010-2039) climate conditions, partially in medium (2040-2069) but not in long-term (2070-2099) scenarios. We show that, for some species, it is likely that assisted colonization would be successful in some portions of the recipient site under current and short-term climate conditions, but over the mid- and long-term, climate changes will make species translocation unsuccessful. The proposed decision framework can help identify species that will need different conservation actions (seed banks and/or botanical gardens) when assisted colonization is unlikely to be successful. Furthermore it has broad applicability, as it can support planning of assisted migration in mountainous areas in the face of climate change.


Assuntos
Carex (Planta)/crescimento & desenvolvimento , Mudança Climática , Conservação dos Recursos Naturais/métodos , Plantas
12.
PLoS One ; 10(7): e0133626, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26197387

RESUMO

Alpine plants are considered to be particularly vulnerable to climate change and related extreme episodes, such as heat waves. Despite growing interest in the impact of heat waves on alpine plants, knowledge about their effects on regeneration is still fragmentary. Recruitment from seeds will be crucial for the successful migration and survival of these species and will play a key role in their future adaptation to climate change. In this study, we assessed the impacts of heat waves on the seed germination of 53 high mountain plants from the Northern Apennines (Italy). The seeds were exposed to laboratory simulations of three seasonal temperature treatments, derived from real data recorded at a meteorological station near the species growing site, which included two heat wave episodes that occurred both in spring 2003 and in autumn 2011. Moreover, to consider the effect of increasing drought conditions related to heat waves, seed germination was also investigated under four different water potentials. In the absence of heat waves, seed germination mainly occurred in spring, after seeds had experienced autumn and winter seasons. However, heat waves resulted in a significant increase of spring germination in c. 30% of the species and elicited autumn germination in 50%. When heat waves were coupled with drought, seed germination decreased in all species, but did not stop completely. Our results suggest that in the future, heat waves will affect the germination phenology of alpine plants, especially conditionally dormant and strictly cold-adapted chorotypes, by shifting the emergence time from spring to autumn and by increasing the proportion of emerged seedlings. The detrimental effects of heat waves on recruitment success is less likely to be due to the inhibition of seed germination per se, but rather due to seedling survival in seasons, and temperature and water conditions that they are not used to experiencing. Changes in the proportion and timing of emergence suggest that there may be major implications for future plant population size and structure.


Assuntos
Germinação/fisiologia , Temperatura Alta , Plantas , Estações do Ano , Plântula/fisiologia , Sementes/fisiologia , Mudança Climática , Ecossistema , Florestas , Itália , Modelos Lineares , Desenvolvimento Vegetal , Dormência de Plantas/fisiologia , Especificidade da Espécie , Água
13.
Plant Physiol Biochem ; 60: 196-206, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22995217

RESUMO

Farmers and growers are constantly looking for high quality seeds able to ensure uniform field establishment and increased production. Seed priming is used to induce pre-germinative metabolism and then enhance germination efficiency and crop yields. It has been hypothesized that priming treatments might also improve stress tolerance in germinating seeds, leaving a sort of 'stress memory'. However, the molecular bases of priming still need to be clarified and the identification of molecular indicators of seed vigor is nowadays a relevant goal for the basic and applied research in seed biology. It is generally acknowledged that enhanced seed vigor and successful priming depend on DNA repair mechanisms, activated during imbibition. The complexity of the networks of DNA damage control/repair functions has been only partially elucidated in plants and the specific literature that address seeds remains scanty. The DNA repair pathways hereby described (Nucleotide and Base Excision Repair, Non-Homologous End Joining, Homologous Recombination) play specific roles, all of them being critical to ensure genome stability. This review also focuses on some novel regulatory mechanisms of DNA repair (chromatin remodeling and small RNAs) while the possible use of telomere sequences as markers of aging in seed banks is discussed. The significant contribution provided by Electron Paramagnetic Resonance in elucidating the kinetics of seed aging, in terms of free radical profiles and membrane integrity is reported.


Assuntos
Dano ao DNA , Reparo do DNA , DNA de Plantas/genética , Plantas/genética , Sementes/fisiologia , Membrana Celular/metabolismo , Montagem e Desmontagem da Cromatina , Espectroscopia de Ressonância de Spin Eletrônica , Radicais Livres/metabolismo , Instabilidade Genômica , Germinação , Fenômenos Fisiológicos Vegetais , Sementes/genética , Sementes/crescimento & desenvolvimento , Fatores de Tempo
14.
Science ; 336(6079): 353-5, 2012 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-22517860

RESUMO

In mountainous regions, climate warming is expected to shift species' ranges to higher altitudes. Evidence for such shifts is still mostly from revisitations of historical sites. We present recent (2001 to 2008) changes in vascular plant species richness observed in a standardized monitoring network across Europe's major mountain ranges. Species have moved upslope on average. However, these shifts had opposite effects on the summit floras' species richness in boreal-temperate mountain regions (+3.9 species on average) and Mediterranean mountain regions (-1.4 species), probably because recent climatic trends have decreased the availability of water in the European south. Because Mediterranean mountains are particularly rich in endemic species, a continuation of these trends might shrink the European mountain flora, despite an average increase in summit species richness across the region.


Assuntos
Altitude , Biodiversidade , Ecossistema , Plantas , Clima , Europa (Continente) , Fenômenos Geológicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA