Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 222
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Mol Biol Rep ; 48(2): 1505-1519, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33471263

RESUMO

Serine hydrolases play crucial roles in many physiological and pathophysiological processes and a panel of these enzymes are targets of approved drugs. Despite this, most of the human serine hydrolases remain poorly characterized with respect to their biological functions and substrates and only a limited number of in vivo active inhibitors have been so far identified. Acylpeptide hydrolase (APEH) is a member of the prolyl-oligopeptidase class, with a unique substrate specificity, that has been suggested to have a potential oncogenic role. In this study, a set of peptides was rationally designed from the lead compound SsCEI 4 and in vitro screened for APEH inhibition. Out of these molecules, a dodecapeptide named Ala 3 showed the best inhibitory effects and it was chosen as a candidate for investigating the anti-cancer effects induced by inhibition of APEH in SAOS-2 cell lines. The results clearly demonstrated that Ala 3 markedly reduced cell viability via deregulation of the APEH-proteasome system. Furthermore, flow cytometric analysis revealed that Ala 3 anti-proliferative effects were closely related to the activation of a caspase-dependent apoptotic pathway. Our findings provide further evidence that APEH can play a crucial role in the pathogenesis of cancer, shedding new light on the great potential of this enzyme as an attractive target for the diagnosis and the quest for selective cancer therapies.


Assuntos
Inibidores Enzimáticos/química , Terapia de Alvo Molecular , Osteossarcoma/genética , Peptídeo Hidrolases/genética , Apoptose/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Sobrevivência Celular/genética , Inibidores Enzimáticos/uso terapêutico , Humanos , Osteossarcoma/tratamento farmacológico , Osteossarcoma/patologia , Peptídeo Hidrolases/química , Peptídeo Hidrolases/efeitos dos fármacos , Complexo de Endopeptidases do Proteassoma/genética , Especificidade por Substrato
2.
J Enzyme Inhib Med Chem ; 34(1): 973-980, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31072150

RESUMO

The reaction mechanism of glycoside hydrolases belonging to family 1 (GH1) of carbohydrate-active enzymes classification, hydrolysing ß-O-glycosidic bonds, is well characterised. This family includes several thousands of enzymes with more than 20 different EC numbers depending on the sugar glycone recognised as substrate. Most GH1 ß-glycosidases bind their substrates with similar specificity through invariant amino acid residues. Despite extensive studies, the clear identification of the roles played by each of these residues in the recognition of different glycones is not always possible. We demonstrated here that a histidine residue, completely conserved in the active site of the enzymes of this family, interacts with the C2-OH of the substrate in addition to the C3-OH as previously shown by 3 D-structure determination.


Assuntos
Histidina/metabolismo , beta-Glucosidase/metabolismo , Sítios de Ligação , Histidina/química , Concentração de Íons de Hidrogênio , Hidrólise , Cinética , Modelos Moleculares , Estrutura Molecular , Temperatura , beta-Glucosidase/química
3.
J Enzyme Inhib Med Chem ; 34(1): 946-954, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31039618

RESUMO

Carbonic anhydrases (CAs, EC 4.2.1.1) are a superfamily of ubiquitous metalloenzymes present in all living organisms on the planet. They are classified into seven genetically distinct families and catalyse the hydration reaction of carbon dioxide to bicarbonate and protons, as well as the opposite reaction. CAs were proposed to be used for biotechnological applications, such as the post-combustion carbon capture processes. In this context, there is a great interest in searching CAs with robust chemical and physical properties. Here, we describe the enhancement of thermostability of the α-CA from Sulfurihydrogenibium yellowstonense (SspCA) by using the anchoring-and-self-labelling-protein-tag system (ASLtag). The anchored chimeric H5-SspCA was active for the CO2 hydration reaction and its thermostability increased when the cells were heated for a prolonged period at high temperatures (e.g. 70 °C). The ASLtag can be considered as a useful method for enhancing the thermostability of a protein useful for biotechnological applications, which often need harsh operating conditions.


Assuntos
Anidrases Carbônicas/química , Anidrases Carbônicas/metabolismo , Bactérias Gram-Negativas Quimiolitotróficas/enzimologia , Coloração e Rotulagem/métodos , Temperatura , Estabilidade Enzimática , Modelos Moleculares , Relação Estrutura-Atividade
4.
Extremophiles ; 22(4): 581-589, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29488113

RESUMO

ATPase/Helicases and nucleases play important roles in DNA end-resection, a critical step during homologous recombination repair in all organisms. In hyperthermophilic archaea the exo-endonuclease NurA and the ATPase HerA cooperate with the highly conserved Mre11-Rad50 complex in 3' single-stranded DNA (ssDNA) end processing to coordinate repair of double-stranded DNA breaks. Little is known, however, about the assembly mechanism and activation of the HerA-NurA complex. In this study we demonstrate that the NurA exonuclease activity is inhibited by the Sulfolobus solfataricus RecQ-like Hel112 helicase. Inhibition occurs both in the presence and in the absence of HerA, but is much stronger when NurA is in complex with HerA. In contrast, the endonuclease activity of NurA is not affected by the presence of Hel112. Taken together these results suggest that the functional interaction between NurA/HerA and Hel112 is important for DNA end-resection in archaeal homologous recombination.


Assuntos
Proteínas Arqueais/metabolismo , DNA Helicases/metabolismo , Sulfolobus solfataricus/enzimologia , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Proteínas Arqueais/química , Proteínas Arqueais/genética , DNA Helicases/genética , Exonucleases/genética , Exonucleases/metabolismo , Recombinação Homóloga , Ligação Proteica , Sulfolobus solfataricus/genética
5.
Extremophiles ; 22(2): 259-270, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29288279

RESUMO

Halophilic archaea, thriving in hypersaline environments, synthesize antimicrobial substances with an unknown role, called halocins. It has been suggested that halocin production gives transient competitive advantages to the producer strains and represents one of the environmental factors influencing the microbial community composition. Herein, we report on the antibacterial activity of a new haloarchaeon selected from solar salterns of the northern coast of Algeria. A total of 81 halophilic strains, isolated from the microbial consortia, were screened for the production of antimicrobial compounds by interspecies competition test and against a collection of commercial haloarchaea. On the basis of the partial 16S rRNA sequencing, the most efficient halocin producer was recognized as belonging to Haloferax (Hfx) sp., while the best indicator microorganism, showing high sensitivity toward halocin, was related to Haloarcula genus. The main morphological, physiological and biochemical properties of Hfx were investigated and a partial purification of the produced halocin was allowed to identify it as a surface membrane protein with a molecular mass between 30 and 40 kDa. Therefore, in this study, we isolated a new strain belonging to Haloferax genus and producing a promising antimicrobial compound useful for applications in health and food industries.


Assuntos
Anti-Infecciosos/química , Proteínas Arqueais/química , Haloferax/metabolismo , Peptídeos/química , Anti-Infecciosos/metabolismo , Anti-Infecciosos/farmacologia , Antibiose , Proteínas Arqueais/metabolismo , Proteínas Arqueais/farmacologia , Halobacterium/efeitos dos fármacos , Haloferax/química , Haloferax/isolamento & purificação , Lagos/microbiologia , Peptídeos/metabolismo , Peptídeos/farmacologia , Salinidade
6.
Glycobiology ; 27(5): 425-437, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28158578

RESUMO

Chemo-enzymatic synthesis of oligosaccharides exploits the diversity of glycosidases and their ability to promote transglycosylation reactions in parallel with hydrolysis. Methods to increase the transglycosylation/hydrolysis ratio include site-directed mutagenesis and medium modification. The former approach was successful in several cases and has provided the best synthetic yields with glycosynthases-mutants at the catalytic nucleophile position that promote transglycosylation with high efficiency, but do not hydrolyze the oligosaccharide products. Several glycosidases have proven recalcitrant to this conversion, thus alternative methods to increase the transglycosylation/hydrolysis ratio by mutation would be very useful. Here we show that a mutant of a ß-galactosidase from Alicyclobacillus acidocaldarius in an invariant residue in the active site of the enzymes of this family (glutamic acid 361) carries out efficient transglycosylation reactions on different acceptors only in the presence of external ions with yields up to 177-fold higher than that of the wild type. This is the first case in which sodium azide and sodium formate in combination with site-directed mutagenesis have been used to introduce transglycosylation activity into a glycosidase. These observations will hopefully guide further efforts to generate useful synthases.


Assuntos
Alicyclobacillus/enzimologia , Glicosilação , Oligossacarídeos/química , beta-Galactosidase/química , Alicyclobacillus/genética , Substituição de Aminoácidos , Catálise , Domínio Catalítico , Hidrólise , Cinética , Mutação , Oligossacarídeos/biossíntese , Especificidade por Substrato , beta-Galactosidase/genética
7.
Biochim Biophys Acta Gen Subj ; 1861(2): 86-96, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27777086

RESUMO

BACKGROUND: Alkylated DNA-protein alkyltransferases (AGTs) are conserved proteins that repair alkylation damage in DNA by using a single-step mechanism leading to irreversible alkylation of the catalytic cysteine in the active site. Trans-alkylation induces inactivation and destabilization of the protein, both in vitro and in vivo, likely triggering conformational changes. A complete picture of structural rearrangements occurring during the reaction cycle is missing, despite considerable interest raised by the peculiarity of AGT reaction, and the contribution of a functional AGT in limiting the efficacy of chemotherapy with alkylating drugs. METHODS: As a model for AGTs we have used a thermostable ortholog from the archaeon Sulfolobus solfataricus (SsOGT), performing biochemical, structural, molecular dynamics and in silico analysis of ligand-free, DNA-bound and mutated versions of the protein. RESULTS: Conformational changes occurring during lesion recognition and after the reaction, allowed us to identify a novel interaction network contributing to SsOGT stability, which is perturbed when a bulky adduct between the catalytic cysteine and the alkyl group is formed, a mandatory step toward the permanent protein alkylation. CONCLUSIONS: Our data highlighted conformational changes and perturbation of intramolecular interaction occurring during lesion recognition and catalysis, confirming our previous hypothesis that coordination between the N- and C-terminal domains of SsOGT is important for protein activity and stability. GENERAL SIGNIFICANCE: A general model of structural rearrangements occurring during the reaction cycle of AGTs is proposed. If confirmed, this model might be a starting point to design strategies to modulate AGT activity in therapeutic settings.


Assuntos
Alquil e Aril Transferases/metabolismo , Proteínas de Ligação a DNA/metabolismo , DNA/metabolismo , Alquilantes/metabolismo , Alquilação/fisiologia , Catálise , Reparo do DNA/fisiologia , Domínios Proteicos , Estabilidade Proteica , Sulfolobus solfataricus/metabolismo
8.
Extremophiles ; 21(4): 733-742, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28493148

RESUMO

To obtain new insights into community compositions of hyperthermophilic microorganisms, defined as having optimal growth temperatures of 80 °C and above, sediment and water samples were taken from two shallow marine hydrothermal vents (I and II) with temperatures of 100 °C at Vulcano Island, Italy. A combinatorial approach of denaturant gradient gel electrophoresis (DGGE) and metagenomic sequencing was used for microbial community analyses of the samples. In addition, enrichment cultures, growing anaerobically on selected polysaccharides such as starch and cellulose, were also analyzed by the combinatorial approach. Our results showed a high abundance of hyperthermophilic archaea, especially in sample II, and a comparable diverse archaeal community composition in both samples. In particular, the strains of the hyperthermophilic anaerobic genera Staphylothermus and Thermococcus, and strains of the aerobic hyperthermophilic genus Aeropyrum, were abundant. Regarding the bacterial community, ε-Proteobacteria, especially the genera Sulfurimonas and Sulfurovum, were highly abundant. The microbial diversity of the enrichment cultures changed significantly by showing a high dominance of archaea, particularly the genera Thermococcus and Palaeococcus, depending on the carbon source and the selected temperature.


Assuntos
Archaea/classificação , Bactérias/classificação , Fontes Hidrotermais/microbiologia , Biologia Marinha , Archaea/genética , Bactérias/genética , Itália , RNA Ribossômico 16S/genética
9.
Nucleic Acids Res ; 43(18): 8801-16, 2015 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-26227971

RESUMO

Alkylated DNA-protein alkyltransferases repair alkylated DNA bases, which are among the most common DNA lesions, and are evolutionary conserved, from prokaryotes to higher eukaryotes. The human ortholog, hAGT, is involved in resistance to alkylating chemotherapy drugs. We report here on the alkylated DNA-protein alkyltransferase, SsOGT, from an archaeal species living at high temperature, a condition that enhances the harmful effect of DNA alkylation. The exceptionally high stability of SsOGT gave us the unique opportunity to perform structural and biochemical analysis of a protein of this class in its post-reaction form. This analysis, along with those performed on SsOGT in its ligand-free and DNA-bound forms, provides insights in the structure-function relationships of the protein before, during and after DNA repair, suggesting a molecular basis for DNA recognition, catalytic activity and protein post-reaction fate, and giving hints on the mechanism of alkylation-induced inactivation of this class of proteins.


Assuntos
Alquil e Aril Transferases/química , Alquil e Aril Transferases/metabolismo , Proteínas Arqueais/química , Proteínas Arqueais/metabolismo , Reparo do DNA , Alquil e Aril Transferases/genética , Alquilação , Proteínas Arqueais/genética , DNA/metabolismo , Estabilidade Enzimática , Modelos Moleculares , Mutação , Relação Estrutura-Atividade , Sulfolobus solfataricus/enzimologia
10.
J Enzyme Inhib Med Chem ; 32(1): 632-639, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28229634

RESUMO

A α-carbonic anhydrase (CA, EC 4.2.1.1) has been purified and characterized biochemically from the mollusk Mytilus galloprovincialis. As in most mollusks, this α-CA is involved in the biomineralization processes leading to the precipitation of calcium carbonate in the mussel shell. The new enzyme had a molecular weight of 50 kDa, which is roughly two times higher than that of a monomeric α-class enzyme. Thus, Mytilus galloprovincialis α-CA is either a dimer, or similar to the Tridacna gigas CA described earlier, may have two different CA domains in its polypeptide chain. The Mytilus galloprovincialis α-CA sequence contained the three His residues acting as zinc ligands and the gate-keeper residues present in all α-CAs (Glu106-Thr199), but had a Lys in position 64 and not a His as proton shuttling residue, being thus similar to the human isoform hCA III. This probably explains the relatively low catalytic activity of Mytilus galloprovincialis α-CA, with the following kinetic parameters for the CO2 hydration reaction: kcat = 4.1 × 105 s-1 and kcat/Km of 3.6 × 107 M-1 × s-1. The enzyme activity was poorly inhibited by the sulfonamide acetazolamide, with a KI of 380 nM. This study is one of the few describing in detail the biochemical characterization of a molluskan CA and may be useful for understanding in detail the phylogeny of these enzymes, their role in biocalcification processes and their potential use in the biomimetic capture of the CO2.


Assuntos
Anidrases Carbônicas/isolamento & purificação , Anidrases Carbônicas/metabolismo , Mytilus/enzimologia , Animais , Inibidores da Anidrase Carbônica/farmacologia , Anidrases Carbônicas/química , Mytilus/anatomia & histologia
11.
J Enzyme Inhib Med Chem ; 32(1): 1120-1128, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28791907

RESUMO

The carbonic anhydrase superfamily (CA, EC 4.2.1.1) of metalloenzymes is present in all three domains of life (Eubacteria, Archaea, and Eukarya), being an interesting example of convergent/divergent evolution, with its seven families (α-, ß-, γ-, δ-, ζ-, η-, and θ-CAs) described so far. CAs catalyse the simple, but physiologically crucial reaction of carbon dioxide hydration to bicarbonate and protons. Recently, our groups characterised the α-CA from the thermophilic bacterium, Sulfurihydrogenibium yellowstonense finding a very high catalytic activity for the CO2 hydration reaction (kcat = 9.35 × 105 s-1 and kcat/Km = 1.1 × 108 M-1 s-1) which was maintained after heating the enzyme at 80 °C for 3 h. This highly thermostable SspCA was covalently immobilised within polyurethane foam and onto the surface of magnetic Fe3O4 nanoparticles. Here, we describe a one-step procedure for immobilising the thermostable SspCA directly on the surface membrane of Escherichia coli, using the INPN domain of Pseudomonas syringae. This strategy has clear advantages with respect to other methods, which require as the first step the production and the purification of the biocatalyst, and as the second step the immobilisation of the enzyme onto a specific support. Our results demonstrate that thermostable SspCA fused to the INPN domain of P. syringae ice nucleation protein (INP) was correctly expressed on the outer membrane of engineered E. coli cells, affording for an easy approach to design biotechnological applications for this highly effective thermostable catalyst.


Assuntos
Proteínas da Membrana Bacteriana Externa/metabolismo , Anidrases Carbônicas/metabolismo , Escherichia coli/metabolismo , Bactérias Gram-Negativas Quimiolitotróficas/enzimologia , Temperatura , Relação Estrutura-Atividade , Propriedades de Superfície
12.
J Enzyme Inhib Med Chem ; 32(1): 759-766, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28497711

RESUMO

Carbonic anhydrases (CAs; EC 4.2.1.1) are metalloenzymes with a pivotal potential role in the biomimetic CO2 capture process (CCP) because these biocatalysts catalyse the simple but physiologically crucial reaction of carbon dioxide hydration to bicarbonate and protons in all life kingdoms. The CAs are among the fastest known enzymes, with kcat values of up to 106 s-1 for some members of the superfamily, providing thus advantages when compared with other CCP methods, as they are specific for CO2. Thermostable CAs might be used in CCP technology because of their ability to perform catalysis in operatively hard conditions, typical of the industrial processes. Moreover, the improvement of the enzyme stability and its reuse are important for lowering the costs. These aspects can be overcome by immobilising the enzyme on a specific support. We report in this article that the recombinant thermostable SspCA (α-CA) from the thermophilic bacterium Sulfurihydrogenibium yellowstonense can been heterologously produced by a high-density fermentation of Escherichia coli cultures, and covalently immobilised onto the surface of magnetic Fe3O4 nanoparticles (MNP) via carbodiimide activation reactions. Our results demonstrate that using a benchtop bioprocess station and strategies for optimising the bacterial growth, it is possible to produce at low cost a large amount SspCA. Furthermore, the enzyme stability and storage greatly increased through the immobilisation, as SspCA bound to MNP could be recovered from the reaction mixture by simply using a magnet or an electromagnetic field, due to the strong ferromagnetic properties of Fe3O4.


Assuntos
Anidrases Carbônicas/biossíntese , Bactérias Gram-Negativas Quimiolitotróficas/enzimologia , Nanopartículas de Magnetita/química , Anidrases Carbônicas/metabolismo , Bactérias Gram-Negativas Quimiolitotróficas/crescimento & desenvolvimento , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/metabolismo
13.
J Enzyme Inhib Med Chem ; 32(1): 1029-1035, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28741386

RESUMO

We cloned, expressed, purified, and determined the kinetic constants of the recombinant α-carbonic anhydrase (rec-MgaCA) identified in the mantle tissue of the bivalve Mediterranean mussel, Mytilus galloprovincialis. In metazoans, the α-CA family is largely represented and plays a pivotal role in the deposition of calcium carbonate biominerals. Our results demonstrated that rec-MgaCA was a monomer with an apparent molecular weight of about 32 kDa. Moreover, the determined kinetic parameters for the CO2 hydration reaction were kcat = 4.2 × 105 s-1 and kcat/Km of 3.5 × 107 M-1 ×s-1. Curiously, the rec-MgaCA showed a very similar kinetic and acetazolamide inhibition features when compared to those of the native enzyme (MgaCA), which has a molecular weight of 50 kDa. Analysing the SDS-PAGE, the protonography, and the kinetic analysis performed on the native and recombinant enzyme, we hypothesised that probably the native MgaCA is a multidomain protein with a single CA domain at the N-terminus of the protein. This hypothesis is corroborated by the existence in mollusks of multidomain proteins with a hydratase activity. Among these proteins, nacrein is an example of α-CA multidomain proteins characterised by a single CA domain at the N-terminus part of the entire protein.


Assuntos
Anidrases Carbônicas/genética , Anidrases Carbônicas/isolamento & purificação , Mytilus/enzimologia , Animais , Clonagem Molecular , Mytilus/genética
14.
Mar Drugs ; 15(9)2017 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-28846630

RESUMO

The carbonic anhydrase (CA, EC 4.2.1.1) superfamily of metalloenzymes catalyzes the hydration of carbon dioxide to bicarbonate and protons. The catalytically active form of these enzymes incorporates a metal hydroxide derivative, the formation of which is the rate-determining step of catalytic reaction, being affected by the transfer of a proton from a metal-coordinated water molecule to the environment. Here, we report the cloning, expression, and purification of a particular CA, i.e., nacrein-like protein encoded in the genome of the Pacific oyster Magallana gigas (previously known as Crassostrea gigas). Furthermore, the amino acid sequence, kinetic constants, and anion inhibition profile of the recombinant enzyme were investigated for the first time. The new protein, CgiNAP2X1, is highly effective as catalyst for the CO2 hydration reaction, based on the measured kinetic parameters, i.e., kcat = 1.0 × 106 s-1 and kcat/KM = 1.2 × 108 M-1·s-1. CgiNAP2X1 has a putative signal peptide, which probably allows an extracellular localization of the protein. The inhibition data demonstrated that the best anion inhibitors of CgiNAP2X1 were diethyldithiocarbamate, sulfamide, sulfamate, phenylboronic acid and phenylarsonic acid, which showed a micromolar affinity for this enzyme, with KIs in the range of 76-87 µM. These studies may add new information on the physiological role of the molluskan CAs in the biocalcification processes.


Assuntos
Ânions/química , Anidrases Carbônicas/metabolismo , Moluscos/química , Ostreidae/química , Animais , Anidrases Carbônicas/genética , Anidrases Carbônicas/isolamento & purificação , Cinética , Oceano Pacífico
15.
Extremophiles ; 20(1): 1-13, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26499124

RESUMO

In the last decade, a powerful biotechnological tool for the in vivo and in vitro specific labeling of proteins (SNAP-tag™ technology) was proposed as a valid alternative to classical protein-tags (green fluorescent proteins, GFPs). This was made possible by the discovery of the irreversible reaction of the human alkylguanine-DNA-alkyl-transferase (hAGT) in the presence of benzyl-guanine derivatives. However, the mild reaction conditions and the general instability of the mesophilic SNAP-tag™ make this new approach not fully applicable to (hyper-)thermophilic and, in general, extremophilic organisms. Here, we introduce an engineered variant of the thermostable alkylguanine-DNA-alkyl-transferase from the Archaea Sulfolobus solfataricus (SsOGT-H5), which displays a catalytic efficiency comparable to the SNAP-tag™ protein, but showing high intrinsic stability typical of proteins from this organism. The successful heterologous expression obtained in a thermophilic model organism makes SsOGT-H5 a valid candidate as protein-tag for organisms living in extreme environments.


Assuntos
Alquil e Aril Transferases/metabolismo , Proteínas Arqueais/metabolismo , Sulfolobus solfataricus/enzimologia , Alquil e Aril Transferases/química , Alquil e Aril Transferases/genética , Sequência de Aminoácidos , Proteínas Arqueais/química , Proteínas Arqueais/genética , DNA/metabolismo , Estabilidade Enzimática , Temperatura Alta , Dados de Sequência Molecular , Ligação Proteica , Engenharia de Proteínas , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Sulfolobus solfataricus/genética
16.
Int J Mol Sci ; 17(10)2016 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-27669226

RESUMO

The proteasome is a multienzymatic complex that controls the half-life of the majority of intracellular proteins, including those involved in apoptosis and cell-cycle progression. Recently, proteasome inhibition has been shown to be an effective anticancer strategy, although its downregulation is often accompanied by severe undesired side effects. We previously reported that the inhibition of acylpeptide hydrolase (APEH) by the peptide SsCEI 4 can significantly affect the proteasome activity in A375 melanoma or Caco-2 adenocarcinoma cell lines, thus shedding new light on therapeutic strategies based on downstream regulation of proteasome functions. In this work, we investigated the functional correlation between APEH and proteasome in a panel of cancer cell lines, and evaluated the cell proliferation upon SsCEI 4-treatments. Results revealed that SsCEI 4 triggered a proliferative arrest specifically in osteosarcoma U2OS cells via downregulation of the APEH-proteasome system, with the accumulation of the typical hallmarks of proteasome: NF-κB, p21(Waf1), and polyubiquitinylated proteins. We found that the SsCEI 4 anti-proliferative effect involved a senescence-like growth arrest without noticeable cytotoxicity. These findings represent an important step toward understanding the mechanism(s) underlying the APEH-mediated downregulation of proteasome in order to design new molecules able to efficiently regulate the proteasome system for alternative therapeutic strategies.


Assuntos
Peptídeo Hidrolases/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Células CACO-2 , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Senescência Celular/efeitos dos fármacos , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Regulação para Baixo/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Humanos , NF-kappa B/metabolismo , Osteossarcoma/metabolismo , Osteossarcoma/patologia , Peptídeo Hidrolases/química , Peptídeo Hidrolases/genética , Peptídeos/farmacologia , RNA Mensageiro/metabolismo
17.
J Biol Chem ; 289(6): 3231-43, 2014 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-24347172

RESUMO

Reverse gyrase is a DNA topoisomerase specific for hyperthermophilic bacteria and archaea. It catalyzes the peculiar ATP-dependent DNA-positive supercoiling reaction and might be involved in the physiological adaptation to high growth temperature. Reverse gyrase comprises an N-terminal ATPase and a C-terminal topoisomerase domain, which cooperate in enzyme activity, but details of its mechanism of action are still not clear. We present here a functional characterization of PcalRG, a novel reverse gyrase from the archaeon Pyrobaculum calidifontis. PcalRG is the most robust and processive reverse gyrase known to date; it is active over a wide range of conditions, including temperature, ionic strength, and ATP concentration. Moreover, it holds a strong ATP-inhibited DNA cleavage activity. Most important, PcalRG is able to induce ATP-dependent unwinding of synthetic Holliday junctions and ATP-stimulated annealing of unconstrained single-stranded oligonucleotides. Combined DNA unwinding and annealing activities are typical of certain helicases, but until now were shown for no other reverse gyrase. Our results suggest for the first time that a reverse gyrase shares not only structural but also functional features with evolutionary conserved helicase-topoisomerase complexes involved in genome stability.


Assuntos
Proteínas Arqueais/química , DNA Topoisomerases Tipo I/química , DNA Arqueal/química , Pyrobaculum/enzimologia , Trifosfato de Adenosina/química , Trifosfato de Adenosina/genética , Trifosfato de Adenosina/metabolismo , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , DNA Topoisomerases Tipo I/genética , DNA Topoisomerases Tipo I/metabolismo , DNA Arqueal/genética , DNA Arqueal/metabolismo , Evolução Molecular , Instabilidade Genômica/fisiologia , Pyrobaculum/genética
18.
Biochim Biophys Acta ; 1840(1): 367-77, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24060745

RESUMO

BACKGROUND: ß-N-acetylhexosaminidases, which are involved in a variety of biological processes including energy metabolism, cell proliferation, signal transduction and in pathogen-related inflammation and autoimmune diseases, are widely distributed in Bacteria and Eukaryotes, but only few examples have been found in Archaea so far. However, N-acetylgluco- and galactosamine are commonly found in the extracellular storage polymers and in the glycans decorating abundantly expressed glycoproteins from different Crenarchaeota Sulfolobus sp., suggesting that ß-N-acetylglucosaminidase activities could be involved in the modification/recycling of these cellular components. METHODS: A thermophilic ß-N-acetylglucosaminidase was purified from cellular extracts of S. solfataricus, strain P2, identified by mass spectrometry, and cloned and expressed in E. coli. Glycosidase assays on different strains of S. solfataricus, steady state kinetic constants, substrate specificity analysis, and the sensitivity to two inhibitors of the recombinant enzyme were also reported. RESULTS: A new ß-N-acetylglucosaminidase from S. solfataricus was unequivocally identified as the product of gene sso3039. The detailed enzymatic characterization demonstrates that this enzyme is a bifunctional ß-glucosidase/ß-N-acetylglucosaminidase belonging to family GH116 of the carbohydrate active enzyme (CAZy) classification. CONCLUSIONS: This study allowed us to propose that family GH116 is composed of three subfamilies, which show distinct substrate specificities and inhibitor sensitivities. GENERAL SIGNIFICANCE: The characterization of SSO3039 allows, for the first time in Archaea, the identification of an enzyme involved in the metabolism ß-N-acetylhexosaminide, an essential component of glycoproteins in this domain of life, and substantially increases our knowledge on the functional role and phylogenetic relationships amongst the GH116 CAZy family members.


Assuntos
Família Multigênica , Sulfolobus solfataricus/enzimologia , beta-N-Acetil-Hexosaminidases/genética , beta-N-Acetil-Hexosaminidases/metabolismo , Sequência de Aminoácidos , Domínio Catalítico , Cromatografia Líquida , Clonagem Molecular , Dados de Sequência Molecular , Filogenia , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos , Especificidade por Substrato , Sulfolobus solfataricus/genética , Sulfolobus solfataricus/crescimento & desenvolvimento , Espectrometria de Massas em Tandem , beta-N-Acetil-Hexosaminidases/isolamento & purificação
19.
Bioorg Med Chem Lett ; 25(9): 2002-6, 2015 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-25817590

RESUMO

Two thermostable α-carbonic anhydrases (α-CAs) isolated from thermophilic Sulfurihydrogenibium spp., namely SspCA (from S. yellowstonensis) and SazCA (from S. azorense), were shown in a previous work to possess interesting complementary properties. SspCA was shown to have an exceptional thermal stability, whereas SazCA demonstrated to be the most active α-CA known to date for the CO2 hydration reaction. Here we report the crystallographic structure of SazCA and the identification of the structural features responsible for its high catalytic activity, by comparing it with SspCA structure. These data are of relevance for the design of engineered proteins showing higher stability and catalytic activity than other α-CAs known to date.


Assuntos
Bactérias/enzimologia , Biocatálise , Anidrases Carbônicas/química , Sequência de Aminoácidos , Anidrases Carbônicas/isolamento & purificação , Anidrases Carbônicas/metabolismo , Cristalização , Modelos Moleculares , Alinhamento de Sequência
20.
Extremophiles ; 18(5): 895-904, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25102812

RESUMO

Repair and defence of genome integrity from endogenous and environmental hazard is a primary need for all organisms. Natural selection has driven the evolution of multiple cell pathways to deal with different DNA damaging agents. Failure of such processes can hamper cell functions and induce inheritable mutations, which in humans may cause cancerogenicity or certain genetic syndromes, and ultimately cell death. A special case is that of hyperthermophilic bacteria and archaea, flourishing at temperatures higher than 80 °C, conditions that favor genome instability and thus call for specific, highly efficient or peculiar mechanisms to keep their genome intact and functional. Over the last few years, numerous studies have been performed on the activity, function, regulation, physical and functional interaction of enzymes and proteins from hyperthermophilic microorganisms that are able to bind, repair, bypass damaged DNA, or modify its structure or conformation. The present review is focused on two enzymes that act on DNA catalyzing unique reactions: reverse gyrase and DNA alkyltransferase. Although both enzymes belong to evolutionary highly conserved protein families present in organisms of the three domains (Eucarya, Bacteria and Archaea), recently characterized members from hyperthermophilic archaea show both common and peculiar features.


Assuntos
Alquil e Aril Transferases/genética , Archaea/genética , Proteínas Arqueais/genética , Bactérias/genética , Proteínas de Bactérias/genética , DNA Topoisomerases Tipo I/genética , Instabilidade Genômica , Alquil e Aril Transferases/química , Alquil e Aril Transferases/metabolismo , Sequência de Aminoácidos , Archaea/enzimologia , Proteínas Arqueais/química , Proteínas Arqueais/metabolismo , Bactérias/enzimologia , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , DNA Topoisomerases Tipo I/química , DNA Topoisomerases Tipo I/metabolismo , Dados de Sequência Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA