Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
IEEE Trans Vis Comput Graph ; 30(1): 131-141, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37922178

RESUMO

Visual data stories can effectively convey insights from data, yet their creation often necessitates intricate data exploration, insight discovery, narrative organization, and customization to meet the communication objectives of the storyteller. Existing automated data storytelling techniques, however, tend to overlook the importance of user customization during the data story authoring process, limiting the system's ability to create tailored narratives that reflect the user's intentions. We present a novel data story generation workflow that leverages adaptive machine-guided elicitation of user feedback to customize the story. Our approach employs an adaptive plug-in module for existing story generation systems, which incorporates user feedback through interactive questioning based on the conversation history and dataset. This adaptability refines the system's understanding of the user's intentions, ensuring the final narrative aligns with their goals. We demonstrate the feasibility of our approach through the implementation of an interactive prototype: Socrates. Through a quantitative user study with 18 participants that compares our method to a state-of-the-art data story generation algorithm, we show that Socrates produces more relevant stories with a larger overlap of insights compared to human-generated stories. We also demonstrate the usability of Socrates via interviews with three data analysts and highlight areas of future work.

2.
IEEE Trans Neural Netw Learn Syst ; 30(1): 44-57, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-29994543

RESUMO

Graphlets are induced subgraphs of a large network and are important for understanding and modeling complex networks. Despite their practical importance, graphlets have been severely limited to applications and domains with relatively small graphs. Most previous work has focused on exact algorithms; however, it is often too expensive to compute graphlets exactly in massive networks with billions of edges, and finding an approximate count is usually sufficient for many applications. In this paper, we propose an unbiased graphlet estimation framework that is: (a) fast with large speedups compared to the state of the art; (b) parallel with nearly linear speedups; (c) accurate with less than 1% relative error; (d) scalable and space efficient for massive networks with billions of edges; and (e) effective for a variety of real-world settings as well as estimating global and local graphlet statistics (e.g., counts). On 300 networks from 20 domains, we obtain <1% relative error for all graphlets. This is vastly more accurate than the existing methods while using less data. Moreover, it takes a few seconds on billion edge graphs (as opposed to days/weeks). These are by far the largest graphlet computations to date.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA