Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
BMC Vet Res ; 20(1): 379, 2024 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-39182079

RESUMO

BACKGROUND: Feeding milk substitutes with low iron content or whole milk without iron supplementation is considered a major factor in developing iron-deficiency anemia in neonatal dairy calves. Young calves are often supplemented with iron dextran injections on the first day of life to prevent anemia. However, the effects of preventive treatment and the presence of disease on serum iron (Fe) concentrations, serum ferritin levels, and hematological blood parameters during the early neonatal stages have not been examined in detail. Therefore, we examined and evaluated the effects of iron dextran injections and health status on the development of hematocrit (Ht), red blood cells (RBC), hemoglobin concentration (Hb), erythrocyte indices (mean corpuscular volume, mean corpuscular hemoglobin, mean corpuscular hemoglobin concentration), Fe, and serum ferritin concentrations in dairy calves within the first 10 days of life. The suitability of serum ferritin as a reliable indicator of anemia in very young calves was evaluated by correlating ferritin concentrations with known laboratory diagnostic parameters of anemia. RESULTS: Iron supplementation significantly increased Fe levels (P = 0.048) but did not affect serum ferritin levels in neonatal calves. Fe concentrations were significantly lower in diseased than healthy calves (P = 0.0417). Iron supplementation significantly affected the health status, as observed in Ht (Ptreat=0.0057; Phealth=0.0097), RBC (Ptreat=0.0342; Phealth=0.0243), and Hb (Ptreat=0.0170; Phealth=0.0168). Serum ferritin levels did not significantly correlate with Fe levels. Both groups showed marked differences in ferritin levels, with the highest levels measured on day 2. Fe concentrations showed weak negative correlations with Hb and Ht levels on day 3 (ρ=-0.45; P = 0.0034 and ρ=-0.045; P = 0.0032, respectively). RBC count showed strong positive correlations with Hb and Ht levels (ρ = 0.91 and ρ = 0.93; P < 0.001). CONCLUSION: Iron dextran injections increased Fe concentrations but reduced Ht level, RBC count, and Hb level. The presence of diseases led to a reduction in Fe and higher values of Ht, RBC, and Hb in moderate disease than in severe disease. Due to physiological fluctuations during the first 3 days of life, serum ferritin level seems unuseful for evaluating iron storage before day 4 of life.


Assuntos
Animais Recém-Nascidos , Doenças dos Bovinos , Ferritinas , Complexo Ferro-Dextran , Animais , Bovinos/sangue , Animais Recém-Nascidos/sangue , Ferritinas/sangue , Complexo Ferro-Dextran/administração & dosagem , Complexo Ferro-Dextran/farmacologia , Doenças dos Bovinos/sangue , Ferro/sangue , Ferro/administração & dosagem , Hematócrito/veterinária , Hemoglobinas/análise , Anemia Ferropriva/veterinária , Anemia Ferropriva/sangue , Anemia Ferropriva/tratamento farmacológico , Feminino , Índices de Eritrócitos/veterinária
2.
Inflamm Res ; 71(2): 187-190, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34940887

RESUMO

OBJECTIVE: We investigated whether it is possible to induce a state of "LPS-sensitization" in neurons of primary cultures from rat dorsal root ganglia by pre-treatment with ultra-low doses of LPS. METHODS: DRG primary cultures were pre-treated with low to ultra-low doses of LPS (0.001-0.1 µg/ml) for 18 h, followed by a short-term stimulation with a higher LPS-dose (10 µg/ml for 2 h). TNF-α in the supernatants was measured as a sensitive read out. Using the fura-2 340/380 nm ratio imaging technique, we further investigated the capsaicin-evoked Ca2+-signals in neurons from DRG, which were pre-treated with a wide range of LPS-doses. RESULTS: Release of TNF-α evoked by stimulation with 10 µg/ml LPS into the supernatant was not significantly modified by pre-exposure to low to ultra-low LPS-doses. Capsaicin-evoked Ca2+-signals were significantly enhanced by pre-treatment with LPS doses being above a certain threshold. CONCLUSION: Ultra-low doses of LPS, which per se do not evoke a detectable inflammatory response, are not sufficient to sensitize neurons (Ca2+-responses) and glial elements (TNF-α-responses) of the primary afferent somatosensory system.


Assuntos
Gânglios Espinais/efeitos dos fármacos , Lipopolissacarídeos/farmacologia , Fator de Necrose Tumoral alfa/biossíntese , Animais , Sinalização do Cálcio/efeitos dos fármacos , Capsaicina/farmacologia , Células Cultivadas , Relação Dose-Resposta a Droga , Gânglios Espinais/imunologia , Ratos , Ratos Wistar
3.
Neuroimmunomodulation ; : 1-14, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35843206

RESUMO

INTRODUCTION: Gabapentin and pregabalin are drugs to treat neuropathic pain. Several studies highlighted effects on presynaptic terminals of nociceptors. Via binding to α2δ subunits of voltage-gated calcium channels, gabapentinoids modulate the synaptic transmission of nociceptive information. However, recent studies revealed further properties of these substances. Treatment with gabapentin or pregabalin in animal models of neuropathic pain resulted not only in reduced symptoms of hyperalgesia but also in an attenuated activation of glial cells and decreased production of pro-inflammatory mediators in the spinal dorsal horn. METHODS: In the present study, we aimed to investigate the impact of gabapentinoids on the inflammatory response of spinal dorsal horn cells, applying the established model of neuro-glial primary cell cultures of the superficial dorsal horn (SDH). We studied effects of gabapentin and pregabalin on lipopolysaccharide (LPS)-induced cytokine release (bioassays), expression of inflammatory marker genes (RT-qPCR), activation of transcription factors (immunocytochemistry), and Ca2+ responses of SDH neurons to stimulation with substance P and glutamate (Ca2+-imaging). RESULTS: We detected an attenuated LPS-induced expression and release of interleukin-6 by SDH cultures in the presence of gabapentinoids. In addition, a significant main effect of drug treatment was observed for mRNA expression of microsomal prostaglandin E synthase 1 and the inhibitor of nuclear factor kappa B. Nuclear translocation of inflammatory transcription factors in glial cells was not significantly affected by gabapentinoid treatment. Moreover, both substances did not modulate neuronal responses upon stimulation with substance P or glutamate. CONCLUSION: Our results provide evidence for anti-inflammatory capacities of gabapentinoids on the acute inflammatory response of SDH primary cultures upon LPS stimulation. Such effects may contribute to the pain-relieving effects of gabapentinoids.

4.
Int J Mol Sci ; 23(21)2022 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-36361909

RESUMO

Inflammatory processes within the peripheral nervous system (PNS) are associated with symptoms of hyperalgesia and allodynia. Pro-inflammatory mediators, such as cytokines or prostaglandins, modulate the excitability of nociceptive neurons, called peripheral sensitization. Here, we aimed to examine if previously reported effects of in vitro stimulation with lipopolysaccharide (LPS) on primary cell cultures of dorsal root ganglia (DRG) reflect changes in a model of LPS-induced systemic inflammation in vivo. Male rats were intraperitoneally injected with LPS (100 µg/kg) or saline. Effects of systemic inflammation on expression of inflammatory mediators, neuronal Ca2+ responses, and activation of inflammatory transcription factors in DRG were assessed. Systemic inflammation was accompanied by an enhanced expression of pro-inflammatory cytokines and cyclooxygenase-2 in lumbar DRG. In DRG primary cultures obtained from LPS-treated rats enhanced neuronal capsaicin-responses were detectable. Moreover, we found an increased activation of inflammatory transcription factors in cultured macrophages and neurons after an in vivo LPS challenge compared to saline controls. Overall, our study emphasizes the role of inflammatory processes in the PNS that may be involved in sickness-behavior-associated hyperalgesia induced by systemic LPS treatment. Moreover, we present DRG primary cultures as tools to study inflammatory processes on a cellular level, not only in vitro but also ex vivo.


Assuntos
Gânglios Espinais , Lipopolissacarídeos , Ratos , Masculino , Animais , Gânglios Espinais/metabolismo , Lipopolissacarídeos/efeitos adversos , Hiperalgesia/induzido quimicamente , Hiperalgesia/metabolismo , Inflamação/induzido quimicamente , Inflamação/metabolismo , Mediadores da Inflamação/metabolismo , Citocinas/metabolismo , Fatores de Transcrição/metabolismo
5.
Int J Mol Sci ; 23(15)2022 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-35955879

RESUMO

Sensory circumventricular organs (sCVOs) are pivotal brain structures involved in immune-to-brain communication with a leaky blood-brain barrier that detect circulating mediators such as lipopolysaccharide (LPS). Here, we aimed to investigate the potential of sCVOs to produce n-3 and n-6 oxylipins after LPS-stimulation. Moreover, we investigated if norepinephrine (NE) co-treatment can alter cytokine- and oxylipin-release. Thus, we stimulated rat primary neuroglial sCVO cultures under n-3- or n-6-enriched conditions with LPS or saline combined with NE or vehicle. Supernatants were assessed for cytokines by bioassays and oxylipins by HPLC-MS/MS. Expression of signaling pathways and enzymes were analyzed by RT-PCR. Tumor necrosis factor (TNF)α bioactivity and signaling, IL-10 expression, and cyclooxygenase (COX)2 were increased, epoxide hydroxylase (Ephx)2 was reduced, and lipoxygenase 15-(LOX) was not changed by LPS stimulation. Moreover, LPS induced increased levels of several n-6-derived oxylipins, including the COX-2 metabolite 15d-prostaglandin-J2 or the Ephx2 metabolite 14,15-DHET. For n-3-derived oxylipins, some were down- and some were upregulated, including 15-LOX-derived neuroprotectin D1 and 18-HEPE, known for their anti-inflammatory potential. While the LPS-induced increase in TNFα levels was significantly reduced by NE, oxylipins were not significantly altered by NE or changes in TNFα levels. In conclusion, LPS-induced oxylipins may play an important functional role in sCVOs for immune-to-brain communication.


Assuntos
Órgãos Circunventriculares , Ácidos Graxos Ômega-3 , Animais , Ciclo-Oxigenase 2 , Citocinas/metabolismo , Ácidos Graxos Ômega-3/farmacologia , Lipopolissacarídeos/farmacologia , Norepinefrina , Oxilipinas/metabolismo , Ratos , Espectrometria de Massas em Tandem , Fator de Necrose Tumoral alfa/metabolismo
6.
Brain Behav Immun ; 92: 90-101, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33242651

RESUMO

The mitochondrial pyruvate carrier (MPC) is an inner-membrane transporter that facilitates pyruvate uptake from the cytoplasm into mitochondria. We previously reported that MPC1 protein levels increase in the hypothalamus of animals during fever induced by lipopolysaccharide (LPS), but how this increase contributes to the LPS responses remains to be studied. Therefore, we investigated the effect of UK 5099, a classical MPC inhibitor, in a rat model of fever, on hypothalamic mitochondrial function and neuroinflammation in LPS-stimulated preoptic area (POA) primary microcultures. Intracerebroventricular administration of UK 5099 reduced the LPS-induced fever. High-resolution respirometry revealed an increase in oxygen consumption and oxygen flux related to ATP synthesis in the hypothalamic homogenate from LPS-treated animals linked to mitochondrial complex I plus II. Preincubation with UK 5099 prevented the LPS-induced increase in oxygen consumption, ATP synthesis and spare capacity only in complex I-linked respiration and reduced mitochondrial H2O2 production. In addition, treatment of rat POA microcultures with UK 5099 reduced the secretion of the proinflammatory and pyrogenic cytokines TNFα and IL-6 as well as the immunoreactivity of inflammatory transcription factors NF-κB and NF-IL6 four hours after LPS stimulation. These results suggest that the regulation of mitochondrial pyruvate metabolism through MPC inhibition may be effective in reducing neuroinflammation and fever.


Assuntos
Peróxido de Hidrogênio , Transportadores de Ácidos Monocarboxílicos , Animais , Febre/induzido quimicamente , Lipopolissacarídeos , Mitocôndrias , Ácido Pirúvico , Ratos
7.
Inflamm Res ; 70(4): 429-444, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33582876

RESUMO

OBJECTIVE: Bacterial lipopolysaccharide (LPS) may contribute to the manifestation of inflammatory pain within structures of the afferent somatosensory system. LPS can induce a state of refractoriness to its own effects termed LPS tolerance. We employed primary neuro-glial cultures from rat dorsal root ganglia (DRG) and the superficial dorsal horn (SDH) of the spinal cord, mainly including the substantia gelatinosa to establish and characterize a model of LPS tolerance within these structures. METHODS: Tolerance was induced by pre-treatment of both cultures with 1 µg/ml LPS for 18 h, followed by a short-term stimulation with a higher LPS dose (10 µg/ml for 2 h). Cultures treated with solvent were used as controls. Cells from DRG or SDH were investigated by means of RT-PCR (expression of inflammatory genes) and immunocytochemistry (translocation of inflammatory transcription factors into nuclei of cells from both cultures). Supernatants from both cultures were assayed for tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) by highly sensitive bioassays. RESULTS: At the mRNA-level, pre-treatment with 1 µg/ml LPS caused reduced expression of TNF-α and enhanced IL-10/TNF-α expression ratios in both cultures upon subsequent stimulation with 10 µg/ml LPS, i.e. LPS tolerance. SDH cultures further showed reduced release of TNF-α into the supernatants and attenuated TNF-α immunoreactivity in microglial cells. In the state of LPS tolerance macrophages from DRG and microglial cells from SDH showed reduced LPS-induced nuclear translocation of the inflammatory transcription factors NFκB and NF-IL6. Nuclear immunoreactivity of the IL-6-activated transcription factor STAT3 was further reduced in neurons from DRG and astrocytes from SDH in LPS tolerant cultures. CONCLUSION: A state of LPS tolerance can be induced in primary cultures from the afferent somatosensory system, which is characterized by a down-regulation of pro-inflammatory mediators. Thus, this model can be applied to study the effects of LPS tolerance at the cellular level, for example possible modifications of neuronal reactivity patterns upon inflammatory stimulation.


Assuntos
Lipopolissacarídeos/farmacologia , Neuroglia/efeitos dos fármacos , Animais , Proteína beta Intensificadora de Ligação a CCAAT/metabolismo , Células Cultivadas , Citocinas/genética , Citocinas/metabolismo , Gânglios Espinais/citologia , NF-kappa B/metabolismo , Neuroglia/metabolismo , Ratos Wistar , Fator de Transcrição STAT3/metabolismo , Corno Dorsal da Medula Espinal/citologia
8.
Pflugers Arch ; 472(12): 1769-1782, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33098464

RESUMO

One maladaptive consequence of inflammatory stimulation of the afferent somatosensory system is the manifestation of inflammatory pain. We established and characterized a neuroglial primary culture of the rat superficial dorsal horn (SDH) of the spinal cord to test responses of this structure to neurochemical, somatosensory, or inflammatory stimulation. Primary cultures of the rat SDH consist of neurons (43%), oligodendrocytes (35%), astrocytes (13%), and microglial cells (9%). Neurons of the SDH responded to cooling (7%), heating (18%), glutamate (80%), substance P (43%), prostaglandin E2 (8%), and KCl (100%) with transient increases in the intracellular calcium [Ca2+]i. Short-term stimulation of SDH primary cultures with LPS (10 µg/ml, 2 h) caused increased expression of pro-inflammatory cytokines, inflammatory transcription factors, and inducible enzymes responsible for inflammatory prostaglandin E2 synthesis. At the protein level, increased concentrations of tumor necrosis factor-α (TNFα) and interleukin-6 (IL-6) were measured in the supernatants of LPS-stimulated SDH cultures and enhanced TNFα and IL-6 immunoreactivity was observed specifically in microglial cells. LPS-exposed microglial cells further showed increased nuclear immunoreactivity for the inflammatory transcription factors NFκB, NF-IL6, and pCREB, indicative of their activation. The short-term exposure to LPS further caused a reduction in the strength of substance P as opposed to glutamate-evoked Ca2+-signals in SDH neurons. However, long-term stimulation with a low dose of LPS (0.01 µg/ml, 24 h) resulted in a significant enhancement of glutamate-induced Ca2+ transients in SDH neurons, while substance P-evoked Ca2+ signals were not influenced. Our data suggest a critical role for microglial cells in the initiation of inflammatory processes within the SDH of the spinal cord, which are accompanied by a modulation of neuronal responses.


Assuntos
Interleucinas/metabolismo , Lipopolissacarídeos/farmacologia , Células do Corno Posterior/metabolismo , Corno Dorsal da Medula Espinal/citologia , Fator de Necrose Tumoral alfa/metabolismo , Animais , Células Cultivadas , Dinoprostona/farmacologia , Feminino , Ácido Glutâmico/farmacologia , Interleucinas/genética , Masculino , NF-kappa B/genética , NF-kappa B/metabolismo , Células do Corno Posterior/efeitos dos fármacos , Cultura Primária de Células/métodos , Ratos , Ratos Wistar , Corno Dorsal da Medula Espinal/efeitos dos fármacos , Substância P/farmacologia , Fator de Necrose Tumoral alfa/genética
9.
Brain Behav Immun ; 48: 147-64, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25813145

RESUMO

The transcription factor nuclear factor interleukin 6 (NF-IL6) plays a pivotal role in neuroinflammation and, as we previously suggested, hypothalamus-pituitary-adrenal-axis-activation. Here, we investigated its contribution to immune-to-brain communication and brain controlled sickness symptoms during lipopolysaccharide (LPS)-induced (50 or 2500 µg/kg i.p.) systemic inflammation in NF-IL6-deficient (KO) or wildtype mice (WT). In WT LPS induced a dose-dependent febrile response and reduction of locomotor activity. While KO developed a normal fever after low-dose LPS-injection the febrile response was almost abolished 3-7 h after a high LPS-dose. High-dose LPS-stimulation was accompanied by decreased (8 h) followed by enhanced (24 h) inflammation in KO compared to WT e.g. hypothalamic mRNA-expression including microsomal prostaglandin E synthase, inducible nitric oxide synthase and further inflammatory mediators, neutrophil recruitment to the brain as well as plasma levels of inflammatory markers such as IL-6 and IL-10. Interestingly, KO showed reduced locomotor activity even under basal conditions, but enhanced locomotor activity to novel environment stress. Hypothalamic-pituitary-adrenal-axis-activity of KO was intact, but tryptophan-metabolizing enzymes were shifted to enhanced serotonin production and reuptake. Overall, we showed for the first time that NF-IL6 plays a dual role for sickness response and immune-to-brain communication: acting pro-inflammatory at 8h but anti-inflammatory at 24 h after onset of the inflammatory response reflecting active natural programming of inflammation. Moreover, reduced locomotor activity observed in KO might be due to altered tryptophan metabolism and serotonin reuptake suggesting some role for NF-IL6 as therapeutic target for depressive disorders.


Assuntos
Encéfalo/metabolismo , Proteína delta de Ligação ao Facilitador CCAAT/metabolismo , Comportamento de Doença/efeitos dos fármacos , Inflamação/metabolismo , Animais , Encéfalo/efeitos dos fármacos , Proteína delta de Ligação ao Facilitador CCAAT/genética , Relação Dose-Resposta a Droga , Feminino , Sistema Hipotálamo-Hipofisário/metabolismo , Inflamação/induzido quimicamente , Lipopolissacarídeos/farmacologia , Masculino , Camundongos , Camundongos Knockout , Atividade Motora/efeitos dos fármacos , Infiltração de Neutrófilos/efeitos dos fármacos , Sistema Hipófise-Suprarrenal/metabolismo
10.
Pflugers Arch ; 466(7): 1451-66, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24114176

RESUMO

Although peripherally released interleukin (IL)-10 has a critical regulatory role in limiting fever in mild-to-moderate forms of inflammation, its role in regulating the more complex thermoregulatory manifestations of hypothermia and fever noted during severe inflammation is less clear. Using cytokine antagonism, we therefore investigated the involvement of peripherally released IL-10 in mediating hypothermia, fever and inflammation induced by intraperitoneal (IP) administration of a large dose of lipopolysaccharide (LPS). Male Wistar rats (200-250 g) were anaesthetized and implanted intra-abdominally with temperature-sensitive radiotelemeters. Rats were randomly assigned to receive IL-10 antiserum (IL-10AS) or normal sheep serum IP, 4 h before receiving an IP injection of LPS (10 mg/kg) or phosphate-buffered saline (PBS). Inflammatory responses were measured in plasma and tissue samples (spleen, liver and brain) at 90 min and 6 h after the IP injection of LPS or PBS. Administration of LPS induced an initial period of hypothermia (~90 min) after which fever developed. Pre-treating rats with IL-10AS abolished the LPS-induced increase in plasma IL-10 levels, attenuated the hypothermia and increased the amplitude of the fever. Moreover, IL-10AS pre-treatment augmented the LPS-induced increase in plasma levels of tumor necrosis factor-alpha (90 min and 6 h), IL-1ß (90 min), prostaglandin E2 (90 min) and IL-6 (6 h), in the periphery, but not the hypothalamus, over the duration of hypothermia and fever. Via its action on the synthesis of inflammatory mediators in the spleen and liver, endogenous IL-10 plays a crucial regulatory role in mediating hypothermia and fever during severe aspectic (LPS-induced) systemic inflammation.


Assuntos
Regulação da Temperatura Corporal , Febre/metabolismo , Hipotermia/metabolismo , Interleucina-10/metabolismo , Animais , Encéfalo/metabolismo , Febre/fisiopatologia , Hipotermia/fisiopatologia , Inflamação/etiologia , Inflamação/metabolismo , Inflamação/fisiopatologia , Interleucina-10/sangue , Interleucina-10/genética , Lipopolissacarídeos/toxicidade , Fígado/metabolismo , Masculino , Ratos , Ratos Wistar , Baço/metabolismo , Fator de Necrose Tumoral alfa/sangue
12.
Brain Behav Immun ; 36: 128-38, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24513873

RESUMO

Obesity contributes to a state of subclinical peripheral and central inflammation and is often associated with aging. Here we investigated the source and contribution of adipose tissue derived cytokines and the cytokine-like hormone leptin to age-related changes in lipopolysaccharide (LPS)-induced brain-controlled sickness-responses. Old (24 months) and young (2 months) rats were challenged with LPS or saline alone or in combination with a neutralizing leptin antiserum (LAS) or control serum. Changes in the sickness-response were monitored by biotelemetry. Additionally, ex vivo fat-explants from young and old rats were stimulated with LPS or saline and culture medium collected and analyzed by cytokine-specific bioassays/ELISAs. We found enhanced duration/degree of the sickness-symptoms, including delayed but prolonged fever in old rats. This response was accompanied by increased plasma-levels of interleukin (IL)-6 and IL-1ra and exaggerated expression of inflammatory markers in brain and liver analyzed by RT-PCR including inhibitor κBα, microsomal prostaglandin synthase and cyclooxygenase 2 (brain). Moreover, for the first time, we were able to show prolonged elevated plasma leptin-levels in LPS-treated old animals. Treatment with LAS in young rats tended to attenuate the early- and in old rats the prolonged febrile response. Fat-explants exhibited unchanged IL-6 but reduced IL-1ra and tumor necrosis factor (TNF)-α release from adipose tissue of aged compared to young animals. In addition, we found increased expression of the endogenous immune regulator microRNA146a in aged animals suggesting a role for these mediators in counteracting brain inflammation. Overall, our results indicate a role of adipose tissue and leptin in "aging-related-inflammation" and age-dependent modifications of febrile-responses.


Assuntos
Envelhecimento/metabolismo , Citocinas/sangue , Inflamação/metabolismo , Leptina/fisiologia , Tecido Adiposo/metabolismo , Animais , Ciclo-Oxigenase 2/metabolismo , Hipotálamo/metabolismo , Inflamação/sangue , Lipopolissacarídeos/toxicidade , Fígado/metabolismo , Masculino , MicroRNAs/metabolismo , Estresse Oxidativo , Ratos , Ratos Wistar
13.
J Neuroinflammation ; 10: 140, 2013 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-24279606

RESUMO

BACKGROUND: The transcription factor nuclear factor interleukin 6 (NF-IL6) is known to be activated by various inflammatory stimuli in the brain. Interestingly, we recently detected NF-IL6-activation within the hypothalamus-pituitary-adrenal (HPA)-axis of rats after systemic lipopolysaccharide (LPS)-injection. Thus, the aim of the present study was to investigate whether NF-IL6 is activated during either, inflammatory, or psychological stress in the rat brain. METHODS: Rats were challenged with either the inflammatory stimulus LPS (100 µg/kg, i.p.) or exposed to a novel environment. Core body temperature (Tb) and motor activity were monitored using telemetry, animals were killed at different time points, brains and blood removed, and primary cell cultures of the anterior pituitary lobe (AL) were investigated. Analyses were performed using immunohistochemistry, RT-PCR, and cytokine-specific bioassays. RESULTS: Stress stimulation by a novel environment increased NF-IL6-immunoreactivity (IR) in the pituitary's perivascular macrophages and hypothalamic paraventricular cells and a rise in Tb lasting approximately 2 h. LPS stimulation lead to NF-IL6-IR in several additional cell types including ACTH-IR-positive corticotrope cells in vivo and in vitro. Two other proinflammatory transcription factors, namely signal transducer and activator of transcription (STAT)3 and NFκB, were significantly activated and partially colocalized with NF-IL6-IR in cells of the AL only after LPS-stimulation, but not following psychological stress. In vitro NF-IL6-activation was associated with induction and secretion of TNFα in folliculostellate cells, which could be antagonized by the JAK-STAT-inhibitor AG490. CONCLUSIONS: We revealed, for the first time, that NF-IL6 activation occurs not only during inflammatory LPS stimulation, but also during psychological stress, that is, a novel environment. Both stressors were associated with time-dependent activation of NF-IL6 in different cell types of the brain and the pituitary. Moreover, while NF-IL6-IR was partially linked to STAT3 and NFκB activation, TNFα production, and ACTH-IR after LPS stimulation; this was not the case after exposure to a novel environment, suggesting distinct underlying signaling pathways. Overall, NF-IL6 can be used as a broad activation marker in the brain and might be of interest for therapeutic approaches not only during inflammatory but also psychological stress.


Assuntos
Encéfalo/metabolismo , Proteína beta Intensificadora de Ligação a CCAAT/metabolismo , Inflamação/metabolismo , Estresse Psicológico/metabolismo , Animais , Imuno-Histoquímica , Masculino , Ratos , Ratos Wistar , Reação em Cadeia da Polimerase Via Transcriptase Reversa
14.
J Neuroinflammation ; 10: 22, 2013 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-23388469

RESUMO

BACKGROUND: Whereas the role played by interleukin (IL)-10 in modulating fever and sickness behavior has been linked to it targeting the production of pro-inflammatory cytokines in the circulation, liver and spleen, it is not known whether it could directly target the local production of pro-inflammatory cytokines within the sensory circumventricular organs (CVOs) situated within the brain, but outside the blood-brain barrier. Using inactivation of IL-10, we, therefore, investigated whether IL-10 could modulate the synthesis of pro-inflammatory cytokines within the sensory CVOs, in particular the organum vasculosum laminae terminalis (OVLT) and area postrema (AP). FINDINGS: Primary OVLT and AP microcultures were established from topographically excised rat pup brain tissue. The microcultures were pretreated with either IL-10 antibodies (AB) (10 µl/350 µl medium) or phosphate-buffered saline (PBS) (10 µl/350 µl medium) before being incubated with lipopolysaccharide (LPS) (100 µg/ml) or PBS in complete medium for 6 h. Supernatants were removed from the microcultures after 6 h of incubation with LPS and used for the determination of IL-6 and tumor necrosis factor (TNF)-α. Pre-treating the OVLT and AP microcultures with IL-10 antibodies significantly enhanced the LPS-induced increase in TNF-α and IL-6 in the supernatant obtained from the microcultures. CONCLUSIONS: Our results show for the first time that the LPS-induced release of pro-inflammatory cytokines in cells cultured from the AP and OVLT can be modulated in the presence of IL-10 antibodies. Thus, we have identified that the sensory CVOs may have a key role to play in both the initiation and modulation of neuroinflammation.


Assuntos
Área Postrema/metabolismo , Febre/metabolismo , Hipotálamo/metabolismo , Comportamento de Doença/fisiologia , Mediadores da Inflamação/metabolismo , Interleucina-10/fisiologia , Animais , Animais Recém-Nascidos , Barreira Hematoencefálica/metabolismo , Células Cultivadas , Feminino , Masculino , Projetos Piloto , Ratos , Ratos Wistar
15.
Brain Behav Immun ; 34: 120-9, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23999490

RESUMO

Although studies have shown that chemokines are pyrogenic when injected into the brain, there are no data indicating which cell types and receptors in the CNS are employed by chemokines such as CCL3 (synonym: MIP-1α) to induce fever in rats. We aimed to study, whether CCL3 induces fever when injected directly into the thermoregulatory center within the pre-optic area (POA). Moreover, we investigated whether CCL3 activates cells from POA microcultures resulting in intracellular Ca++ mobilization and synthesis/release of TNF-α and IL-6. Microinjections of CCL3 into the POA induced a dose-dependent fever, which was accompanied by a decrease in tail skin temperature. The primary microcultures of the POA (from topographically excised rat pup brain tissue) were stimulated by bolus administrations of 100 µl CCL3 (0.1 or 0.01 µg) or sterile PBS as control. We evaluated the responses of 261 (30.89%) neurons, 346 (40.94%) astrocytes and 238 microglia cells (29.17%). Stimulation of rat POA microcultures with CCL3 was capable of inducing Ca++ signaling in 15.31% of all astrocytes and 5.75% of all neurons investigated. No cellular Ca++-signals were observed after overnight incubation of the cultures with antiCCR1 or antiCCR5 antibodies. CCL3 did not alter the release of the pyrogenic cytokines IL-6 or TNF-α into the supernatant of the cultures. In conclusion the present study shows for the first time that CCL-3 injected directly into the rat POA, evoked an integrated febrile response. In parallel this chemokine induces Ca++ signaling in astrocytes and neurons via both CCR1 and CCR5 receptors when administered to POA microcultures without stimulating the synthesis of TNF-α and IL-6. It is a possibility that CCL3-induced fever may occur via CCR1 and CCR5 receptors stimulation of astrocytes and neurons from POA.


Assuntos
Sinalização do Cálcio/fisiologia , Quimiocina CCL3/toxicidade , Febre/metabolismo , Neuroglia/metabolismo , Neurônios/metabolismo , Área Pré-Óptica/metabolismo , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Células Cultivadas , Quimiocina CCL3/administração & dosagem , Feminino , Febre/induzido quimicamente , Interleucina-6/biossíntese , Masculino , Microglia/efeitos dos fármacos , Microglia/metabolismo , Microinjeções , Neuroglia/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Área Pré-Óptica/citologia , Ratos , Ratos Wistar , Temperatura , Sensação Térmica/efeitos dos fármacos , Sensação Térmica/fisiologia , Fator de Necrose Tumoral alfa/biossíntese
16.
Arterioscler Thromb Vasc Biol ; 32(8): 1979-90, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22539594

RESUMO

OBJECTIVE: Staphylococcus aureus can induce platelet aggregation. The rapidity and degree of this correlates with the severity of disseminated intravascular coagulation, and depends on platelet peptidoglycans. Surface-located thiol isomerases play an important role in platelet activation. The staphylococcal extracellular adherence protein (Eap) functions as an adhesin for host plasma proteins. Therefore we tested the effect of Eap on platelets. METHODS AND RESULTS: We found a strong stimulation of the platelet-surface thiol isomerases protein disulfide isomerase and endoplasmic reticulum stress proteins 57 and 72 by Eap. Eap induced thiol isomerase-dependent glycoprotein IIb/IIIa activation, granule secretion, and platelet aggregation. Treatment of platelets with thiol blockers, bacitracin, and anti-protein disulfide isomerase antibody inhibited Eap-induced platelet activation. The effect of Eap on platelets and protein disulfide isomerase activity was completely blocked by glycosaminoglycans. Inhibition by the hydrophobic probe bis(1-anilinonaphthalene 8-sulfonate) suggested the involvement of hydrophobic sites in protein disulfide isomerase and platelet activation by Eap. CONCLUSIONS: In the present study, we found an additional and yet unknown mechanism of platelet activation by a bacterial adhesin, involving stimulation of thiol isomerases. The thiol isomerase stimulatory and prothrombotic features of a microbial secreted protein are probably not restricted to S aureus and Eap. Because many microorganisms are coated with amyloidogenic proteins, it is likely that the observed mechanism is a more general one.


Assuntos
Proteínas de Bactérias/farmacologia , Ativação Plaquetária/efeitos dos fármacos , Isomerases de Dissulfetos de Proteínas/fisiologia , Proteínas de Ligação a RNA/farmacologia , Staphylococcus aureus/patogenicidade , Naftalenossulfonato de Anilina/farmacologia , Plaquetas/enzimologia , Ácido Ditionitrobenzoico/farmacologia , Humanos , Selectina-P/sangue , Proteoglicanas/farmacologia , Tetraspanina 30/sangue
17.
J Inflamm Res ; 15: 509-531, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35115803

RESUMO

PURPOSE: Previously, we have shown that CyPPA (cyclohexyl-[2-(3,5-dimethyl-pyrazol-1-yl)-6-methyl-pyrimidin-4-yl]-amine), a pharmacological small-conductance calcium-activated potassium (SK)-channel positive modulator, antagonizes lipopolysaccharide (LPS)-induced cytokine expression in microglial cells. Here, we aimed to test its therapeutic potential for brain-controlled sickness symptoms, brain inflammatory response during LPS-induced systemic inflammation, and peripheral metabolic pathways in mice. METHODS: Mice were pretreated with CyPPA (15 mg/kg IP) 24 hours before and simultaneously with LPS stimulation (2.5 mg/kg IP), and the sickness response was recorded by a telemetric system for 24 hours. A second cohort of mice were euthanized 2 hours after CyPPA or solvent treatment to assess underlying CyPPA-induced mechanisms. Brain, blood, and liver samples were analyzed for inflammatory mediators or nucleotide concentrations using immunohistochemistry, real-time PCR and Western blot, or HPLC. Moreover, we investigated CyPPA-induced changes of UCP1 expression in brown adipose tissue (BAT)-explant cultures. RESULTS: CyPPA treatment did not affect LPS-induced fever, anorexia, adipsia, or expression profiles of inflammatory mediators in the hypothalamus or plasma or microglial reactivity to LPS (CD11b staining and CD68 mRNA expression). However, CyPPA alone induced a rise in core body temperature linked to heat production via altered metabolic pathways like reduced levels of adenosine, increased protein content, and increased UCP1 expression in BAT-explant cultures, but no alteration in ATP/ADP concentrations in the liver. CyPPA treatment was accompanied by altered pathways, including NFκB signaling, in the hypothalamus and cortex, while circulating cytokines remained unaltered. CONCLUSION: Overall, while CyPPA has promise as a treatment strategy, in particular according to results from in vitro experiments, we did not reveal anti-inflammatory effects during severe LPS-induced systemic inflammation. Interestingly, we found that CyPPA alters metabolic pathways inducing short hyperthermia, most likely due to increased energy turnover in the liver and heat production in BAT.

18.
Mol Neurobiol ; 59(1): 475-494, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34716556

RESUMO

Neuroinflammation within the superficial dorsal horn (SDH) of the spinal cord induces inflammatory pain with symptoms of hyperalgesia and allodynia. Glial activation and production of inflammatory mediators (e.g. cytokines) is associated with modulation of nociceptive signalling. In this context, medicinal signalling cells, e.g. obtained from adipose tissue (AdMSCs), gained attention due to their capacity to modulate the inflammatory response in several diseases, e.g. spinal cord injury. We applied the recently established mixed neuroglial primary cell culture of the rat SDH to investigate effects of AdMSCs on the inflammatory response of SDH cells. Following establishment of a co-cultivation system, we performed specific bioassays for tumour necrosis factor alpha (TNFα) and interleukin (IL)-6, RT-qPCR and immunocytochemistry to detect changes in cytokine production and glial activation upon inflammatory stimulation with lipopolysaccharide (LPS). LPS-induced expression and release of pro-inflammatory cytokines (TNFα, IL-6) by SDH cells was significantly attenuated in the presence of AdMSCs. Further evidence for anti-inflammatory capacities of AdMSCs derived from a blunted LPS-induced TNFα/IL-10 expression ratio and suppressed nuclear translocation of the inflammatory transcription factor nuclear factor kappa B (NFκB) in SDH microglial cells. Expression of IL-10, transforming growth factor beta (TGF-ß) and TNFα-stimulated gene-6 (TSG-6) was detected in AdMSCs, which are putative candidates for anti-inflammatory capacities of these cells. We present a novel co-cultivation system of AdMSCs with neuroglial primary cultures of the SDH to investigate immunomodulatory effects of AdMSCs at a cellular level.


Assuntos
Tecido Adiposo/patologia , Diferenciação Celular/fisiologia , Doenças Neuroinflamatórias/patologia , Células do Corno Posterior/patologia , Tecido Adiposo/metabolismo , Animais , Células Cultivadas , Técnicas de Cocultura , Citocinas/metabolismo , Interleucina-6/metabolismo , Células do Corno Posterior/metabolismo , Ratos , Ratos Wistar , Fator de Necrose Tumoral alfa/metabolismo
19.
Cytokine ; 56(3): 739-48, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22004922

RESUMO

Parthenolide, a sesquiterpene lactone, has been reported to exhibit a variety of anti-inflammatory and immunomodulatory effects. To test the effect of parthenolide on brain inflammatory responses, brain oxidative stress and fever, we treated rats with parthenolide (1 mg/kg), simultaneously or 1 h prior to a systemic (i.p.) challenge with a moderate dose (100 µg/kg) of lipopolysaccharide (LPS). The initial hypothermia was exaggerated; the second phase of the biphasic LPS-induced fever and circulating interleukin-6 (IL-6) and tumor necrosis factor α (TNFα) were significantly attenuated only in parthenolide-pretreated animals. In the hypothalamus, markers of NFκB/NF-IL6 pathway activation (inhibitor κBα, NF-IL6 and the serin/threonin kinase-like protein mRNA expression) and markers of oxidative stress (including nuclear respiratory factor 1) and NFκB immunoreactivity were significantly reduced while NF-IL6 immunoreactivity and suppressor of cytokine signaling 3 mRNA expression remained unaltered, 8 h after LPS-stimulation with parthenolide-pretreatment. Importantly, this response was accompanied by decreased mRNA expression of the rate limiting enzyme in prostaglandin synthesis, cyclooxygenase 2 (COX2), known for its critical role in fever induction pathways. A direct action of parthenolide on brain cells was also confirmed in a primary neuro-glial cell culture of the vascular organ of the lamina terminalis a pivotal brain structure for fever manifestation with a leaky blood-brain barrier. In summary, pretreatment with parthenolide attenuates the febrile response during LPS-induced systemic inflammation by reducing circulating IL-6 and TNFα and decreasing hypothalamic NFκB/NF-IL6 activation, oxidative stress and expression of COX2. Thus parthenolide appears to have the potential to reduce brain inflammation.


Assuntos
Citocinas/sangue , Encefalite/sangue , Encefalite/tratamento farmacológico , Febre/sangue , Febre/tratamento farmacológico , Sesquiterpenos/uso terapêutico , Animais , Biomarcadores/sangue , Temperatura Corporal/efeitos dos fármacos , Proteína beta Intensificadora de Ligação a CCAAT/metabolismo , Células Cultivadas , Encefalite/complicações , Encefalite/patologia , Febre/induzido quimicamente , Febre/complicações , Regulação da Expressão Gênica/efeitos dos fármacos , Hipotálamo/efeitos dos fármacos , Hipotálamo/metabolismo , Hipotálamo/patologia , Injeções Intraperitoneais , Interleucina-6/sangue , Lipopolissacarídeos/administração & dosagem , Masculino , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/genética , NF-kappa B/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar , Sesquiterpenos/farmacologia , Transdução de Sinais/efeitos dos fármacos , Fator de Necrose Tumoral alfa/sangue
20.
Ann Transl Med ; 9(13): 1061, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34422973

RESUMO

BACKGROUND: Early recanalization of an occluded vessel is associated with a better clinical outcome in acute ischemic stroke. Intravenous thrombolysis using recombinant tissue plasminogen activator (rt-PA) is only available in a minority of patients and often fails to reopen the occluded vessel. Mechanical recanalization is more effective in this matter but only available for selected patients when a thrombectomy centre can be reached. Therefore, sonothrombolysis might represent an alternative or complementary approach. Here, we tested microbubble-mediated sonothrombolysis (mmSTL) in a thromboembolic stroke model for middle cerebral artery occlusion (MCAO) in rats. METHODS: Sixty-seven male Wistar rats underwent MCAO using an autologous full blood thrombus and were randomly assigned to four groups receiving rt-PA, mmSTL, a combination of both, or a placebo. Diagnostic workup included neurological examination, assessment of infarct size, and presence of intracerebral haemorrhage by magnetic resonance imaging (MRI) and presence of microbleedings in histological staining. RESULTS: Neurological examination revealed no differences between the treatment groups. In all treatment groups, there was a reduction in infarct size 24 hours after MCAO as compared to the placebo (P≤0.05), but there were no differences between the active treatment groups (P>0.05) (placebo 0.75±0.10 cm3; mmSTL 0.43±0.07 cm3; rt-PA 0.4±0.07 cm3; mmSTL + rt-PA 0.27±0.08 cm3). Histological staining displayed intracerebral microbleedings in all animals. The frequency of gross bleeding detected by MRI did not differ between the groups (placebo 3; mmSTL 4; rt-PA 2; mmSTL + rt-PA 2; P>0.05) and was not associated with worse performance in clinical testing (P>0.05). There were no statistical differences in the mortality between the groups (P>0.05). CONCLUSIONS: Our study showed the efficacy and safety of mmSTL with or without rt-PA in an embolic rat stroke model using a continuous full blood thrombus. Sonothrombolysis might be useful for patients who need to be transported to a thrombectomy centre or for those with distal vessel occlusion.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA