RESUMO
It is well established that all camelids have unique antibodies circulating in their blood. Unlike antibodies from other species, these special antibodies are devoid of light chains and are composed of a heavy-chain homodimer. These so-called heavy-chain antibodies (HCAbs) are expressed after a V-D-J rearrangement and require dedicated constant gamma-genes. An immune response is raised in these so-called heavy-chain antibodies following classical immunization protocols. These HCAbs are easily purified from serum, and the antigen-binding fragment interacts with parts of the target that are less antigenic to conventional antibodies. Since the antigen-binding site of the dromedary HCAb is comprised in one single domain, referred to as variable domain of heavy chain of HCAb (VHH) or nanobody (Nb), we designed a strategy to clone the Nb repertoire of an immunized dromedary and to select the Nbs with specificity for our target antigens. The monoclonal Nbs are well produced in bacteria, are very stable and highly soluble, and bind their cognate antigen with high affinity and specificity. We have successfully developed recombinant Nbs for research purposes, as probe in biosensors, to diagnose infections, and to treat diseases like cancer or trypanosomosis.
Assuntos
Camelídeos Americanos/imunologia , Camelus/imunologia , Imunoglobulinas/metabolismo , Nanotecnologia/métodos , Animais , Camelídeos Americanos/metabolismo , Camelus/metabolismo , Engenharia GenéticaRESUMO
The Mohr-Tranebjaerg syndrome (MTS), a neurodegenerative syndrome characterized by progressive sensorineural hearing loss, dystonia, mental retardation and blindness, is a mitochondrial disease caused by mutations in the deafness/dystonia peptide 1 (DDP1) gene. DDP1 shows similarity to the yeast proteins Tim9, Tim10 and Tim12, components of the mitochondrial import machinery for carrier proteins. Here, we show that DDP1 belongs to a large family of evolutionarily conserved proteins. We report the identification, chromosomal localization and expressional analysis of six human family members which represent further candidate genes for neurodegenerative diseases.
Assuntos
Proteínas de Transporte/química , Proteínas de Escherichia coli , Proteínas de Membrana/química , Proteínas de Membrana Transportadoras , Mitocôndrias/enzimologia , Proteínas de Transporte da Membrana Mitocondrial , Proteínas Mitocondriais , Precursores de Proteínas/química , Proteínas de Saccharomyces cerevisiae , Sequência de Aminoácidos , Northern Blotting , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Sequência Conservada , DNA Complementar/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Evolução Molecular , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Dados de Sequência Molecular , Família Multigênica , Filogenia , Mapeamento Físico do Cromossomo , Precursores de Proteínas/genética , Precursores de Proteínas/metabolismo , Saccharomyces cerevisiae/enzimologia , Homologia de Sequência de Aminoácidos , Distribuição TecidualRESUMO
Overlapping tRNA genes in mitochondria of many metazoans introduce a problem for the processing of such polycistronic primary transcripts. Using runoff transcripts and an S100 extract from HeLa cell mitochondria, the processing of the human mitochondrial tRNATyr/tRNACys precursor (carrying an overlap of one base) was investigated: tRNACys is released in its complete form carrying the overlapping residue at the first position, whereas tRNATyr lacks that nucleotide at the discriminator position. Partial deletion of tRNACys or complete replacement by a non-tRNA-like sequence does not alter the processing reaction and indicates that the upstream tRNATyr alone is recognized by a 3'-endonuclease activity. The truncated 3'-end of this tRNATyr is then completed in an editing reaction that incorporates the missing residue. The processing of this tRNA overlap seems to be species-specific, because an overlapping tRNA precursor (tRNASer(AGY)/tRNALeu(CUN)) from opossum mitochondria is not recognized by the human extract. Because processing activities for overlapping and nonoverlapping tRNA precursors could not be separated, it seems that one general activity is responsible for the 3'-end processing of mitochondrial tRNAs and that this activity coevolved with the particular overlap between tRNATyr and tRNACys in human mitochondria, being unable to recognize overlaps between other tRNAs.
Assuntos
DNA Mitocondrial/genética , Edição de RNA , Processamento Pós-Transcricional do RNA , RNA de Transferência Aminoácido-Específico/genética , RNA de Transferência de Cisteína/genética , RNA de Transferência de Leucina/genética , Sequência de Bases , Primers do DNA , Endorribonucleases , Humanos , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Conformação de Ácido Nucleico , Reação em Cadeia da Polimerase , RNA de Transferência Aminoácido-Específico/química , RNA de Transferência de Serina/genética , RNA de Transferência de Tirosina/genética , Especificidade da Espécie , Transcrição GênicaRESUMO
Tim8 and Tim13 are non-essential, conserved proteins of the mitochondrial intermembrane space, which are organized in a hetero-oligomeric complex. They are structurally related to Tim9 and Tim10, essential components of the import machinery for mitochondrial carrier proteins. Here we show that the TIM8-13 complex interacts with translocation intermediates of Tim23, which are partially translocated across the outer membrane but not with fully imported or assembled Tim23. The TIM8-13 complex binds to the N-terminal or intermediate domain of Tim23. It traps the incoming precursor in the intermembrane space thereby preventing retrograde translocation. The TIM8-13 complex is strictly required for import of Tim23 under conditions when a low membrane potential exists in the mitochondria. The human homologue of Tim8 is encoded by the DDP1 (deafness/dystonia peptide 1) gene, which is associated with the Mohr-Tranebjaerg syndrome (MTS), a progressive neurodegenerative disorder leading to deafness. It is demonstrated that import of human Tim23 is dependent on a high membrane potential. A mechanism to explain the pathology of MTS is discussed.
Assuntos
Proteínas de Transporte/metabolismo , Proteínas de Transporte/fisiologia , Proteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras , Mitocôndrias Hepáticas/metabolismo , Proteínas de Transporte da Membrana Mitocondrial , Proteínas de Saccharomyces cerevisiae , Animais , Transporte Biológico , Membrana Celular/metabolismo , Reagentes de Ligações Cruzadas/farmacologia , Humanos , Masculino , Potenciais da Membrana , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Modelos Biológicos , Mutação , Ligação Proteica , Estrutura Terciária de Proteína , Transporte Proteico , Proteínas/metabolismo , Ratos , Síndrome , Temperatura , Tripsina/farmacologia , Zinco/farmacologiaRESUMO
Tim8 and Tim13 of yeast belong to a family of evolutionary conserved zinc finger proteins that are organized in hetero-oligomeric complexes in the mitochondrial intermembrane space. Mutations in DDP1 (deafness dystonia peptide 1), the human homolog of Tim8, are associated with the Mohr-Tranebjaerg syndrome, a progressive neurodegenerative disorder. We show that DDP1 acts with human Tim13 in a complex in the intermembrane space. The DDP1.hTim13 complex is in direct contact with translocation intermediates of human Tim23 in mammalian mitochondria. The human DDP1.hTim13 complex complements the function of the TIM8.13 complex in yeast and facilitates import of yeast and human Tim23. Thus, the pathomechanism underlying the Mohr-Tranebjaerg syndrome may involve an impaired biogenesis of the human TIM23 complex causing severe pleiotropic mitochondrial dysfunction.