RESUMO
Inbreeding depression, the reduction in fitness due to mating of related individuals, is of particular conservation concern in species with small, isolated populations. Although inbreeding depression is widespread in natural populations, long-lived species may be buffered from its effects during population declines due to long generation times and thus are less likely to have evolved mechanisms of inbreeding avoidance than species with shorter generation times. However, empirical evidence of the consequences of inbreeding in threatened, long-lived species is limited. In this study, we leverage a well-studied population of gopher tortoises, Gopherus polyphemus, to examine the role of inbreeding depression and the potential for behavioural inbreeding avoidance in a natural population of a long-lived species. We tested the hypothesis that increased parental inbreeding leads to reduced hatching rates and offspring quality. Additionally, we tested for evidence of inbreeding avoidance. We found that high parental relatedness results in offspring with lower quality and that high parental relatedness is correlated with reduced hatching success. However, we found that hatching success and offspring quality increase with maternal inbreeding, likely due to highly inbred females mating with more distantly related males. We did not find evidence for inbreeding avoidance in males and outbred females, suggesting sex-specific evolutionary trade-offs may have driven the evolution of mating behaviour. Our results demonstrate inbreeding depression in a long-lived species and that the evolution of inbreeding avoidance is shaped by multiple selective forces.
Assuntos
Depressão por Endogamia , Endogamia , Tartarugas/genética , Tartarugas/fisiologia , Animais , Feminino , Masculino , Reprodução/genéticaRESUMO
Pastureland currently occupies 26% of Earth's ice-free land surface. As the global human population continues to increase and developing countries consume more protein-rich diets, the amount of land devoted to livestock grazing will only continue to rise. To mitigate the loss of global biodiversity as a consequence of the ever-expanding amount of land converted from native habitat into pastureland for livestock grazing, an understanding of how livestock impact wildlife is critical. While previous reviews have examined the impact of livestock on a wide variety of taxa, there have been no reviews examining how global livestock grazing affects amphibians. We conducted both an empirical study in south-central Florida examining the impact of cattle on amphibian communities and a quantitative literature review of similar studies on five continents. Our empirical study analyzed amphibian community responses to cattle as both a binary (presence/absence) variable, and as a continuous variable based on cow pie density. Across all analyses, we were unable to find any evidence that cattle affected the amphibian community at our study site. The literature review returned 46 papers that met our criteria for inclusion. Of these studies, 15 found positive effects of livestock on amphibians, 21 found neutral/mixed effects, and 10 found negative effects. Our quantitative analysis of these data indicates that amphibian species that historically occurred in closed-canopy habitats are generally negatively affected by livestock presence. In contrast, open-canopy amphibians are likely to experience positive effects from the presence of livestock, and these positive effects are most likely to occur in locations with cooler climates and/or greater precipitation seasonality. Collectively, our empirical work and literature review demonstrate that under the correct conditions well-managed rangelands are able to support diverse assemblages of amphibians. These rangeland ecosystems may play a critical role in protecting future amphibian biodiversity by serving as an "off-reserve" system to supplement the biodiversity conserved within traditional protected areas.
Assuntos
Ecossistema , Gado , Anfíbios , Animais , Biodiversidade , Bovinos , Conservação dos Recursos Naturais , Feminino , Florida , Humanos , Áreas AlagadasRESUMO
Fire regimes influence natural populations of organisms in diverse ways, via direct effects on population dynamics as well as indirect effects on habitat and ecosystem processes. Although many amphibian species have evolved to persist in fire-dependent ecosystems, the effects of fire on the genetic diversity of amphibian populations remain relatively unexplored. We examined how different aspects of fire history relate to population genetic diversity and structure of an abundant anuran, Hyla femoralis, in a large, intact area of Florida scrub containing hundreds of seasonally inundated ponds. Specifically, we assessed the overall population genetic structure and examined whether variation in time since fire, fire intensity, or historical fire frequency at breeding sites explained spatial variation in genetic diversity. Based on our sampling of 17 breeding aggregations within the 2,100-ha study area, neither recent nor frequent fire reduce genetic diversity or restrict connectivity among ponds for H. femoralis. Overall, mean effective population sizes were large (average range = 68-572). We detected a positive trend between effective population size (Ne) and average intensity of the most-recent fire, with this factor explaining 42% of the variation in Ne. Our results contrast with previous studies that consistently demonstrate strong relationships between fire history and population genetic structure of scrub-associated lizard species, suggesting that H. femoralis is resilient to a wide range of fire regimes. More generally, our study contributes to understanding the roles of life-history characteristics and environmental unpredictability in shaping organisms' responses to fire.
Assuntos
Anuros/genética , Incêndios , Variação Genética , Genética Populacional , Animais , Ecossistema , Espécies em Perigo de Extinção , Florida , Fluxo Gênico , Densidade Demográfica , Quercus , Áreas AlagadasRESUMO
In many vertebrates, body size is an important driver of variation in male reproductive success. Larger, more fit individuals are more likely to dominate mating opportunities, skewing siring success and resulting in lower effective population sizes and genetic diversity. The mating system of the gopher tortoise (Gopherus polyphemus) has been characterized as both female-defense and scramble-competition polygyny. Mating systems are typically not fixed and can be influenced by factors such as population density, demographic structure, and environmental conditions; however, most populations will have a predominant strategy that results from local conditions. We assessed how male body size influences patterns of paternity and reproductive success in a natural population of gopher tortoises in Florida, United States. Using microsatellites, we assigned parentage of 220 hatchlings from 31 nests collected during 2 reproductive seasons. Larger males were significantly more likely to sire offspring and sired more offspring than smaller males; however, the likelihood of a clutch being multiply sired was unrelated to male body size. We also found evidence of mate fidelity across years. Although paternity patterns in this high-density population are more consistent with defense polygyny, female monopoly by males was incomplete, with both large and small males contributing to multiply sired clutches. Additional behavioral data are needed to clarify the role of female mate selection in paternity outcomes. The context-dependence of mating systems underscores the need to compare parentage patterns across populations and to recognize the potential for more than 1 strategy to be employed within a single population.
Assuntos
Tamanho Corporal , Tartarugas/fisiologia , Animais , Tamanho da Ninhada , Feminino , Genótipo , Masculino , Reprodução , Comportamento Sexual Animal , Tartarugas/genéticaRESUMO
Long-term monitoring of amphibians is needed to clarify population-level effects of ranaviruses (Rv) and the fungal pathogen Batrachochytrium dendrobatidis (Bd). We investigated disease dynamics of co-occurring amphibian species and potential demographic consequences of Rv and Bd infections at a montane site in the Southern Appalachians, Georgia, USA. Our 3-yr study was unique in combining disease surveillance with intensive population monitoring at a site where both pathogens are present. We detected sub-clinical Bd infections in larval and adult red-spotted newts Notophthalmus viridescens viridescens, but found no effect of Bd on body condition of adult newts. Bd infections also occurred in larvae of 5 anuran species that bred in our fishless study pond, and we detected co-infections with Bd and Rv in adult newts and larval green frogs Lithobates clamitans. However, all mortality and clinical signs in adult newts and larval anurans were most consistent with ranaviral disease, including a die-off of larval wood frogs Lithobates sylvaticus in small fish ponds located near our main study pond. During 2 yr of drift fence monitoring, we documented high juvenile production in newts, green frogs and American bullfrogs L. catesbeianus, but saw no evidence of juvenile recruitment in wood frogs. Larvae of this susceptible species may have suffered high mortality in the presence of both Rv and predators. Our findings were generally consistent with results of Rv-exposure experiments and support the purported role of red-spotted newts, green frogs, and American bullfrogs as common reservoirs for Bd and/or Rv in permanent and semi-permanent wetlands.
Assuntos
Notophthalmus/microbiologia , Notophthalmus/virologia , Lagoas , Comportamento Predatório , Rana clamitans/microbiologia , Rana clamitans/virologia , Animais , Quitridiomicetos/imunologia , Infecções por Vírus de DNA/epidemiologia , Infecções por Vírus de DNA/veterinária , Infecções por Vírus de DNA/virologia , Georgia , Larva/microbiologia , Larva/virologia , Micoses/microbiologia , Micoses/transmissão , Micoses/veterinária , Rana clamitans/fisiologia , Ranavirus/isolamento & purificação , Estações do Ano , Fatores de TempoRESUMO
Herbivorous vertebrates rely on complex communities of mutualistic gut bacteria to facilitate the digestion of celluloses and hemicelluloses. Gut microbes are often convergent based on diet and gut morphology across a phylogenetically diverse group of mammals. However, little is known about microbial communities of herbivorous hindgut-fermenting reptiles. Here, we investigate how factors at the individual level might constrain the composition of gut microbes in an obligate herbivorous reptile. Using multiplexed 16S rRNA gene sequencing, we characterized the faecal microbial community of a population of gopher tortoises (Gopherus polyphemus) and examined how age, genetic diversity, spatial structure and kinship influence differences among individuals. We recovered phylotypes associated with known cellulolytic function, including candidate phylum Termite Group 3, suggesting their importance for gopher tortoise digestion. Although host genetic structure did not explain variation in microbial composition and community structure, we found that fine-scale spatial structure, inbreeding, degree of relatedness and possibly ontogeny shaped patterns of diversity in faecal microbiomes of gopher tortoises. Our findings corroborate widespread convergence of faecal-associated microbes based on gut morphology and diet and demonstrate the role of spatial and demographic structure in driving differentiation of gut microbiota in natural populations.
Assuntos
Trato Gastrointestinal/microbiologia , Endogamia , Microbiota/genética , Tartarugas/microbiologia , Animais , Bactérias/classificação , DNA Bacteriano/genética , Fezes/microbiologia , Florida , Repetições de Microssatélites , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNARESUMO
Since 1999, infections with an incompletely characterized alveolate protozoan variously reported as a Dermocystidium-like organism, a Perkinsus-like agent, and Dermomycoides sp. have been associated with mortality events in tadpoles of ranid frogs from the USA. However, disease or mortality events due to this organism have not been described in post-metamorphic animals. We describe infection with a morphologically similar protozoan presenting itself as a leg mass in a free-ranging adult southern leopard frog Lithobates sphenocephalus. Using histological examination, we found a mass within skeletal muscle; this mass was composed of macrophages with intracytoplasmic, thick-walled, 4 to 6 µm in diameter, spherical basophilic protozoal organisms that exhibited green autofluorescence with epiflorescence illumination. Using transmission electron microscopy, organism cell walls were found to have electron-dense plates that, when viewed by scanning electron microscopy, were reminiscent of the thecal plates of dinoflagellates. Additional morphologic and molecular phylogenetic research is needed to resolve the taxonomic status of this organism.
Assuntos
Miosite/veterinária , Infecções Protozoárias em Animais/parasitologia , Ranidae , Animais , Masculino , Miosite/parasitologia , Infecções Protozoárias em Animais/patologiaRESUMO
From 1999 to 2006, we sampled > 1200 amphibians for the fungal pathogen Batrachochytrium dendrobatidis (Bd) at 30 sites in the southeastern USA. Using histological techniques or PCR assays, we detected chytrid infection in 10 species of aquatic-breeding amphibians in 6 states. The prevalence of chytrid infection was 17.8% for samples of postmetamorphic amphibians examined using skin swab-PCR assays (n = 202 samples from 12 species at 4 sites). In this subset of samples, anurans had a much higher prevalence of infection than caudates (39.2% vs. 5.5%, respectively). Mean prevalence in ranid frogs was 40.7%. The only infected salamanders were Notophthalmus viridescens at 3 sites. We found infected amphibians from late winter through late spring and in 1 autumn sample. Although we encountered moribund or dead amphibians at 9 sites, most mortality events were not attributed to Bd. Chytridiomycosis was established as the probable cause of illness or death in fewer than 10 individuals. Our observations suggest a pattern of widespread and subclinical infections. However, because most of the sites in our study were visited only once, we cannot dismiss the possibility that chytridiomycosis is adversely affecting some populations. Furthermore, although there is no evidence of chytrid-associated declines in our region, the presence of this pathogen is cause for concern given global climate change and other stressors. Although presence-absence surveys may still be needed for some taxa, such as bufonids, we recommend that future researchers focus on potential population-level effects at sites where Bd is now known to occur.
Assuntos
Anfíbios/microbiologia , Quitridiomicetos/isolamento & purificação , Micoses/veterinária , Animais , Micoses/epidemiologia , Micoses/microbiologia , Sudeste dos Estados Unidos/epidemiologiaRESUMO
Understanding the factors influencing the degree of spatial overlap among conspecifics is important for understanding multiple ecological processes. Compared to terrestrial carnivores, relatively little is known about the factors influencing conspecific spatial overlap in snakes, although across snake taxa there appears to be substantial variation in conspecific spatial overlap. In this study, we described conspecific spatial overlap of eastern indigo snakes (Drymarchon couperi) in peninsular Florida and examined how conspecific spatial overlap varied by sex and season (breeding season vs. non-breeding season). We calculated multiple indices of spatial overlap using 6- and 3-month utilization distributions (UD) of dyads of simultaneously adjacent telemetered snakes. We also measured conspecific UD density values at each telemetry fix and modeled the distribution of those values as a function of overlap type, sex, and season using generalized Pareto distributions. Home range overlap between males and females was significantly greater than overlap between individuals of the same sex and male home ranges often completely contained female home ranges. Male home ranges overlapped little during both seasons, whereas females had higher levels of overlap during the non-breeding season. The spatial patterns observed in our study are consistent with those seen in many mammalian carnivores, in which low male-male overlap and high inter-sexual overlap provides males with greater access to females. We encourage additional research on the influence of prey availability on conspecific spatial overlap in snakes as well as the behavioral mechanisms responsible for maintaining the low levels of overlap we observed.
Assuntos
Colubridae/fisiologia , Comportamento Sexual/fisiologia , Animais , Ecossistema , Feminino , Florida , Comportamento de Retorno ao Território Vital , Masculino , Estações do Ano , TelemetriaRESUMO
The interactive effects of environmental stressors and emerging infectious disease pose potential threats to stream salamander communities and their headwater stream ecosystems. To begin assessing these threats, we conducted occupancy surveys and pathogen screening of stream salamanders (Family Plethodontidae) in a protected southern Appalachians watershed in Georgia and North Carolina, USA. Of the 101 salamanders screened for both chytrid fungus (Batrachochytrium dendrobatidis) and Ranavirus, only two exhibited low-level chytrid infections. Prevalence of Ranavirus was much higher (30.4% among five species of Desmognathus). Despite the ubiquity of ranaviral infections, we found high probabilities of site occupancy (≥0.60) for all stream salamander species.
Assuntos
Quitridiomicetos/isolamento & purificação , Infecções por Vírus de DNA/veterinária , Ranavirus/isolamento & purificação , Urodelos/virologia , Animais , Região dos Apalaches/epidemiologia , Quitridiomicetos/patogenicidade , Infecções por Vírus de DNA/epidemiologia , Ecossistema , Georgia/epidemiologia , Micoses/epidemiologia , Micoses/veterinária , North Carolina/epidemiologia , Reação em Cadeia da Polimerase , Densidade Demográfica , Vigilância da População , Prevalência , Ranavirus/patogenicidade , Rios/microbiologia , Urodelos/crescimento & desenvolvimento , Urodelos/microbiologiaRESUMO
Despite the continuing loss of wetland habitats and associated declines in amphibian populations, attempts to translate wetland losses into measurable losses to ecosystems have been lacking. We estimated the potential productivity from the amphibian community that would be compromised by the loss of a single isolated wetland that has been protected from most industrial, agricultural, and urban impacts for the past 54 years. We used a continuous drift fence at Ellenton Bay, a 10-ha freshwater wetland on the Savannah River Site, near Aiken, South Carolina (U.S.A.), to sample all amphibians for 1 year following a prolonged drought. Despite intensive agricultural use of the land surrounding Ellenton Bay prior to 1951, we documented 24 species and remarkably high numbers and biomass of juvenile amphibians (>360,000 individuals; >1,400 kg) produced during one breeding season. Anurans (17 species) were more abundant than salamanders (7 species), comprising 96.4% of individual captures. Most (95.9%) of the amphibian biomass came from 232095 individuals of a single species of anuran (southern leopard frog[Rana sphenocephala]). Our results revealed the resilience of an amphibian community to natural stressors and historical habitat alteration and the potential magnitude of biomass and energy transfer from isolated wetlands to surrounding terrestrial habitat. We attributed the postdrought success of amphibians to a combination of adult longevity (often >5 years), a reduction in predator abundance, and an abundance of larval food resources. Likewise, the increase of forest cover around Ellenton Bay from <20% in 1951 to >60% in 2001 probably contributed to the long-term persistence of amphibians at this site. Our findings provide an optimistic counterpoint to the issue of the global decline of biological diversity by demonstrating that conservation efforts can mitigate historical habitat degradation.
Assuntos
Anfíbios/fisiologia , Biomassa , Conservação dos Recursos Naturais/métodos , Ecossistema , Animais , Água Doce , Densidade Demográfica , Dinâmica Populacional , South CarolinaRESUMO
Our objective was to determine how green frogs (Rana clamitans) are affected by multiple exposures to a sublethal level of the carbamate insecticide, carbaryl, in outdoor ponds. Tadpoles were added to 1,000-l ponds at a low or high density which were exposed to carbaryl 0, 1, 2, or 3 times. Length of the larval period, mass, developmental stage, tadpole survival, and proportion metamorphosed were used to determine treatment effects. The frequency of dosing affected the proportion of green frogs that reached metamorphosis and the developmental stage of tadpoles. Generally, exposure to carbaryl increased rates of metamorphosis and development. The effect of the frequency of carbaryl exposure on development varied with the density treatment; the majority of metamorphs and the most developed tadpoles came from high-density ponds exposed to carbaryl 3 times. This interaction suggests that exposure to carbaryl later in the larval period stimulated metamorphosis, directly or indirectly, under high-density conditions. Our study indicates that exposure to a contaminant can lead to early initiation of metamorphosis and that natural biotic factors can mediate the effects of a contaminant in the environment.