Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Hyperthermia ; 36(1): 337-343, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30729818

RESUMO

PURPOSE: To retrospectively evaluate the accuracy of a novel software platform for assessing completeness of percutaneous thermal ablations. MATERIALS & METHODS: Ninety hepatocellular carcinomas (HCCs) in 50 patients receiving percutaneous ultrasound-guided microwave ablation (MWA) that resulted in apparent technical success at 24-h post-ablation computed tomography (CT) and with ≥1-year imaging follow-up were randomly selected from a 320 HCC ablation database (2010-2016). Using a novel volumetric registration software, pre-ablation CT volumes of the HCCs without and with the addition of a 5 mm safety margin, and corresponding post-ablation necrosis volumes were segmented, co-registered and overlapped. These were compared to visual side-by-side inspection of axial images. RESULTS: At 1-year follow-up, CT showed absence of local tumor progression (LTP) in 69/90 (76.7%) cases and LTP in 21/90 (23.3%). For HCCs classified by the software as "incomplete tumor treatments", LTP developed in 13/17 (76.5%) and all 13 (100%) of these LTPs occurred exactly where residual non-ablated tumor was identified by retrospective software analysis. HCCs classified as "complete ablation with <100% 5 mm ablative margins" had LTP in 8/49 (16.3%), while none of 24 HCCs with "complete ablation including 100% 5 mm ablative margins" had LTP. Differences in LTP between both partially ablated HCCs vs completely ablated HCCs, and ablated HCCs with <100% vs with 100% 5 mm margins were statistically significant (p < .0001 and p = .036, respectively). Thus, 13/21 (61.9%) incomplete tumor treatments could have been detected immediately, were the software available at the time of ablation. CONCLUSIONS: A novel software platform for volumetric assessment of ablation completeness may increase the detection of incompletely ablated tumors, thereby holding the potential to avoid subsequent recurrences.


Assuntos
Ablação por Cateter/métodos , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Software
2.
Cancers (Basel) ; 14(5)2022 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-35267620

RESUMO

Background: Over the last two decades, augmented reality (AR) has been used as a visualization tool in many medical fields in order to increase precision, limit the radiation dose, and decrease the variability among operators. Here, we report the first in vivo study of a novel AR system for the guidance of percutaneous interventional oncology procedures. Methods: Eight patients with 15 liver tumors (0.7−3.0 cm, mean 1.56 + 0.55) underwent percutaneous thermal ablations using AR guidance (i.e., the Endosight system). Prior to the intervention, the patients were evaluated with US and CT. The targeted nodules were segmented and three-dimensionally (3D) reconstructed from CT images, and the probe trajectory to the target was defined. The procedures were guided solely by AR, with the position of the probe tip was subsequently confirmed by conventional imaging. The primary endpoints were the targeting accuracy, the system setup time, and targeting time (i.e., from the target visualization to the correct needle insertion). The technical success was also evaluated and validated by co-registration software. Upon completion, the operators were assessed for cybersickness or other symptoms related to the use of AR. Results: Rapid system setup and procedural targeting times were noted (mean 14.3 min; 12.0−17.2 min; 4.3 min, 3.2−5.7 min, mean, respectively). The high targeting accuracy (3.4 mm; 2.6−4.2 mm, mean) was accompanied by technical success in all 15 lesions (i.e., the complete ablation of the tumor and 13/15 lesions with a >90% 5-mm periablational margin). No intra/periprocedural complications or operator cybersickness were observed. Conclusions: AR guidance is highly accurate, and allows for the confident performance of percutaneous thermal ablations.

3.
Cardiovasc Intervent Radiol ; 41(7): 1049-1057, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29492634

RESUMO

AIM: To evaluate a novel contrast-enhanced cone-beam computed tomography (CE-CBCT) registration method for accurate immediate assessment of ablation outcomes. MATERIALS AND METHODS: Contrast-enhanced computed tomography (CECT) was registered with CE-CBCT by applying semiautomatic landmark registration followed by automatic affine and non-rigid registration to correct for respiratory phase differences and liver deformation. This scheme was retrospectively applied to 30 patients who underwent 38 percutaneous microwave liver ablations. Three datasets were obtained for each case: (1) conventional CECT scans 24 h before ablation, (2) intraprocedural CE-CBCT scans, and (3) CECT scans 24 h post-ablation. Using a five-point scale, two experienced radiologists qualitatively assessed registration quality, equivalence of CE-CBCT assessment of ablation outcome to 24 h post-ablation CECT, and perceived increase of confidence using the fusion method to CBCT alone. Additionally, residual post-ablation tumor volumes were measured at both CE-CBCT and 24 h CECT and compared to the pre-CECT. RESULTS: Registration quality was high for both radiologists (R1: 4.3 ± 0.6, R2: 4.4 ± 0.5; p = 0.87). Comparisons between the registration of pre-ablation CECT with CE-CBCT versus post-ablation CECT regarding the position of the ablated area to the treated target (R1: 4.4 ± 0.6, R2: 4.6 ± 0.4) and treatment outcome (R1: 4.5 ± 0.5, R2: 4.6 ± 0.4) were equivalent (p > 0.35). Increased confidence was noted when using fusion (R1: 4.6 ± 0.4, R2: 4.6 ± 0.4; p = 0.84). Moreover, in 6 ablations (15.8%) the intraprocedural registered CBCT showed residual tumor precisely where identified on the 24 h post-ablation CECT. CONCLUSIONS: Combined CE-CBCT holds the potential to change the current workflow of mini-invasive cancer local treatments. Given earlier visual identification of residual tumor post-ablation, this includes potentially eliminating the need for some additional treatments.


Assuntos
Técnicas de Ablação/métodos , Tomografia Computadorizada de Feixe Cônico/métodos , Imageamento Tridimensional/métodos , Neoplasias Hepáticas/diagnóstico por imagem , Neoplasias Hepáticas/cirurgia , Radiografia Intervencionista/métodos , Idoso , Idoso de 80 Anos ou mais , Meios de Contraste , Feminino , Humanos , Fígado/diagnóstico por imagem , Fígado/cirurgia , Masculino , Intensificação de Imagem Radiográfica/métodos , Estudos Retrospectivos , Resultado do Tratamento
4.
Eur Radiol Exp ; 2: 18, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30148251

RESUMO

BACKGROUND: To assess the feasibility of a novel system that uses augmented reality to guide interventional oncology procedures. METHODS: This study was conducted in accordance to the guidelines of the local institutional review boards. Evaluation of an augmented reality system based upon a tablet, a needle handle and a set of markers was performed in three experimental models. Initially, a male anthropomorphic trunk phantom equipped with five polyvinyl chloride bars (two of 16 cm in length and 3 cm in diameter and four of 45, 30 or 20 cm in length and 2 cm in diameter) was used to study the accuracy of the system without respiratory motion or tissue compression. Next, small metallic targets were placed in a porcine model to evaluate how respiration affects the system accuracy. Finally, the performance of the system on a more complete model, a cadaver with liver metastasis, was tested. RESULTS: In all experimental settings, extremely high targeting accuracy of < 5 mm in all cases was achieved: 2.0 ± 1.5 mm (mean ± standard deviation) for the anthropomorphic model, 3.9 ± 0.4 mm for the porcine model, and 2.5 mm and 2.8 mm for the two metastases in the cadaver model. CONCLUSIONS: Augmented reality can assist with needle guidance with great target accuracy for interventional procedures by simultaneously visualising three-dimensional reconstructed anatomical structures, tumour targets and interventional devices on a patient's body, enabling performance of procedures in a simple and confident way.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA