Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Cell Commun Signal ; 21(1): 253, 2023 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-37735672

RESUMO

BACKGROUND: microRNAs (miRNAs) are known as potent gene expression regulators, and several studies have revealed the prognostic value of miRNAs in acute myeloid leukemia (AML) patient survival. Recently, strong evidence has indicated that miRNAs can be transported by exosomes (EXOs) from cancer cells to recipient immune microenvironment (IME) cells. RESULTS: We found that AML blast-released EXOs enhance CD3 T-cell apoptosis in both CD4 and CD8 T cells. We hypothesized that miRNAs present in EXOs are key players in mediating the changes observed in AML T-cell survival. We found that miR-24-3p, a commonly overexpressed miRNA in AML, was present in released EXOs, suggesting that EXO-miR-24-3p was linked to the increased miR-24-3p levels detected in isolated AML T cells. These results were corroborated by ex vivo-generated miR-24-3p-enriched EXOs, which showed that miR-24-3p-EXOs increased apoptosis and miR-24-3p levels in T cells. We also demonstrated that overexpression of miR-24-3p increased T-cell apoptosis and affected T-cell proliferation by directly targeting DENN/MADD expression and indirectly altering the NF-κB, p-JAK/STAT, and p-ERK signaling pathways but promoting regulatory T-cell (Treg) development. CONCLUSIONS: These results highlight a mechanism through which AML blasts indirectly impede T-cell function via transferred exosomal miR-24-3p. In conclusion, by characterizing the signaling network regulated by individual miRNAs in the leukemic IME, we aimed to discover new nonleukemic immune targets to rescue the potent antitumor function of T cells against AML blasts. Video Abstract.


Assuntos
Exossomos , Leucemia Mieloide Aguda , MicroRNAs , Humanos , NF-kappa B , Transdução de Sinais , MicroRNAs/genética , Ativação Linfocitária , Leucemia Mieloide Aguda/genética , Microambiente Tumoral , Fatores de Troca do Nucleotídeo Guanina , Proteínas Adaptadoras de Sinalização de Receptores de Domínio de Morte
2.
Int J Mol Sci ; 21(19)2020 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-32992819

RESUMO

BACKGROUND: In addition to their roles in different biological processes, microRNAs in the tumor microenvironment appear to be potential diagnostic and prognostic biomarkers for various malignant diseases, including acute myeloid leukemia (AML). To date, no screening of circulating miRNAs has been carried out in the bone marrow compartment of AML. Accordingly, we investigated the circulating miRNA profile in AML bone marrow at diagnosis (AMLD) and first complete remission post treatment (AMLPT) in comparison to healthy donors (HD). METHODS: Circulating miRNAs were isolated from AML bone marrow aspirations, and a low-density TaqMan miRNA array was performed to identify deregulated miRNAs followed by quantitative RT-PCR to validate the results. Bioinformatic analysis was conducted to evaluate the diagnostic and prognostic accuracy of the highly and significantly identified deregulated miRNA(s) as potential candidate biomarker(s). RESULTS: We found several deregulated miRNAs between the AMLD vs. HD vs. AMLPT groups, which were involved in tumor progression and immune suppression pathways. We also identified significant diagnostic and prognostic signatures with the ability to predict AML patient treatment response. CONCLUSIONS: This study provides a possible role of enriched circulating bone marrow miRNAs in the initiation and progression of AML and highlights new markers for prognosis and treatment monitoring.


Assuntos
Medula Óssea/metabolismo , MicroRNA Circulante/metabolismo , Leucemia Mieloide Aguda , Microambiente Tumoral , Biomarcadores Tumorais/metabolismo , Medula Óssea/patologia , Feminino , Humanos , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/terapia , Masculino , Pessoa de Meia-Idade , Prognóstico
3.
J Cell Physiol ; 234(10): 17459-17472, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30805923

RESUMO

Regulatory T cells (Tregs) are central for maintaining immune balance and their dysfunction drives the expansion of critical immunologic disorders. During the past decade, microRNAs (miRNAs) have emerged as potent regulators of gene expression among which immune-related genes and their immunomodulatory properties have been associated with different immune-based diseases. The miRNA signature of human peripheral blood (PB) CD8+ CD25 + CD127 low Tregs has not been described yet. We thus identified, using TaqMan low-density array (TLDA) technique followed by individual quantitative real-time polymerase chain reaction (qRT-PCR) confirmation, 14 miRNAs, among which 12 were downregulated whereas two were upregulated in CD8 + CD25 + CD127 low Tregs in comparison to CD8 + CD25 - T cells. In the next step, microRNA Data Integration Portal (mirDIP) was used to identify potential miRNA target sites in the 3'-untranslated region (3'-UTR) of key Treg cell-immunomodulatory genes with a special focus on interleukin 10 (IL-10) and transforming growth factor ß (TGF-ß). Having identified potential miR target sites in the 3'-UTR of IL-10 (miR-27b-3p and miR-340-5p) and TGF-ß (miR-330-3p), we showed through transfection and transduction assays that the overexpression of two underexpressed miRNAs, miR-27b-3p and miR-340-5p, downregulated IL-10 expression upon targeting its 3'-UTR. Similarly, overexpression of miR-330-3p negatively regulated TGF-ß expression. These results highlighted an important impact of the CD8 + Treg mirnome on the expression of genes with significant implication on immunosuppression. These observations could help in better understanding the mechanism(s) orchestrating Treg immunosuppressive function toward unraveling new targets for treating autoimmune pathologies and cancer.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Expressão Gênica/imunologia , Interleucina-10/metabolismo , Linfócitos T Reguladores/imunologia , Fator de Crescimento Transformador beta/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica/imunologia , Humanos , MicroRNAs/genética
4.
J Cell Physiol ; 234(5): 5998-6011, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30343493

RESUMO

Interleukin-21 (IL-21) is a cytokine with potent regulatory effects on different immune cells. Recently, IL-21 has been contemplated for use in the treatment of cancers. However, the molecular mechanisms regulating human IL-21 gene expression has not yet been described. In this study, we initially studied the promoter region and identified the transcription start site. We thereafter described the essential region upstream of the transcription start site and showed the in vivo binding of NFATc2 and SP1 transcription factors to this region, in addition to their positive role in IL-21 expression. We also studied the role of microRNAs (miRNAs) in regulating IL-21 expression. We, thus, established the miRNA profile of CD4+CD45RO+ versus CD4+CD45RA+ isolated from healthy volunteers and identified a signature composed of 12 differentially expressed miRNAs. We showed that miR-302c is able to negatively regulate IL-21 expression by binding directly to its target site in the 3'-untranslated region. Moreover, after using fresh human CD4-positive T cells, we observed the high acetylation level of histone H4, an observation well in line with the already described high expression of IL-21 in CD4+CD45RO+ versus CD4+CD45RA+ T cells. Altogether, our data identified different molecular mechanisms regulating IL-21 expression.


Assuntos
Linfócitos T CD4-Positivos/metabolismo , Interleucinas/metabolismo , Antígenos Comuns de Leucócito/metabolismo , MicroRNAs/metabolismo , Fatores de Transcrição NFATC/metabolismo , Fator de Transcrição Sp1/metabolismo , Regiões 3' não Traduzidas , Acetilação , Sítios de Ligação , Linfócitos T CD4-Positivos/imunologia , Células HEK293 , Células HeLa , Voluntários Saudáveis , Histonas/metabolismo , Humanos , Interleucinas/genética , Células Jurkat , Antígenos Comuns de Leucócito/imunologia , MicroRNAs/genética , Fatores de Transcrição NFATC/genética , Regiões Promotoras Genéticas , Fator de Transcrição Sp1/genética , Sítio de Iniciação de Transcrição , Transcrição Gênica
5.
J Transl Med ; 12: 218, 2014 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-25090912

RESUMO

BACKGROUND: Recently, regulatory T (Treg) cells have gained interest in the fields of immunopathology, transplantation and oncoimmunology. Here, we investigated the microRNA expression profile of human natural CD8(+)CD25(+) Treg cells and the impact of microRNAs on molecules associated with immune regulation. METHODS: We purified human natural CD8(+) Treg cells and assessed the expression of FOXP3 and CTLA-4 by flow cytometry. We have also tested the ex vivo suppressive capacity of these cells in mixed leukocyte reactions. Using TaqMan low-density arrays and microRNA qPCR for validation, we could identify a microRNA 'signature' for CD8(+)CD25(+)FOXP3(+)CTLA-4(+) natural Treg cells. We used the 'TargetScan' and 'miRBase' bioinformatics programs to identify potential target sites for these microRNAs in the 3'-UTR of important Treg cell-associated genes. RESULTS: The human CD8(+)CD25(+) natural Treg cell microRNA signature includes 10 differentially expressed microRNAs. We demonstrated an impact of this signature on Treg cell biology by showing specific regulation of FOXP3, CTLA-4 and GARP gene expression by microRNA using site-directed mutagenesis and a dual-luciferase reporter assay. Furthermore, we used microRNA transduction experiments to demonstrate that these microRNAs impacted their target genes in human primary Treg cells ex vivo. CONCLUSIONS: We are examining the biological relevance of this 'signature' by studying its impact on other important Treg cell-associated genes. These efforts could result in a better understanding of the regulation of Treg cell function and might reveal new targets for immunotherapy in immune disorders and cancer.


Assuntos
Linfócitos T CD8-Positivos/metabolismo , Perfilação da Expressão Gênica , MicroRNAs/genética , Linfócitos T Reguladores/metabolismo , Regiões 3' não Traduzidas/genética , Antígenos CD/metabolismo , Antígeno CTLA-4/metabolismo , Proliferação de Células , Separação Celular , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Regulação da Expressão Gênica , Células HeLa , Humanos , Lentivirus/metabolismo , Proteínas de Membrana/metabolismo , MicroRNAs/metabolismo , Transcrição Gênica , Transdução Genética
6.
Biomed Pharmacother ; 171: 116165, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38237348

RESUMO

Cancer development is a complex process that primarily results from the combination of genetic alterations and the dysregulation of major signalling pathways due to interference with the epigenetic machinery. As major epigenetic regulators, miRNAs are central players in the control of many key tumour development factors. These miRNAs have been classified as oncogenic miRNAs (oncomiRs) when they target tumour suppressor genes and tumour suppressor miRNAs (TS miRNAs) when they inhibit oncogene protein expression. Most of the mechanisms that modulate oncomiR expression are linked to transcriptional or posttranscriptional regulation. However, non-transcriptional processes, such as gene amplification, have been described as alternative processes that are responsible for increasing oncomiR expression. The current review summarises the different mechanisms controlling the upregulation of oncomiR expression in cancer cells and the tumour microenvironment (TME). Detailed knowledge of the mechanism underlying the regulation of oncomiR expression in cancer may pave the way for understanding the critical role of oncomiRs in cancer development and progression.


Assuntos
MicroRNAs , Neoplasias , Humanos , MicroRNAs/genética , Neoplasias/metabolismo , Genes Supressores de Tumor , Oncogenes , Proteínas Oncogênicas/genética , Regulação Neoplásica da Expressão Gênica , Microambiente Tumoral
7.
J Biol Chem ; 287(13): 9910-9922, 2012 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-22294691

RESUMO

Regulatory T cells (Tregs) are characterized by a high expression of IL-2 receptor α chain (CD25) and of forkhead box P3 (FOXP3), the latter being essential for their development and function. Another major player in the regulatory function is the cytotoxic T-lymphocyte associated molecule-4 (CTLA-4) that inhibits cytotoxic responses. However, the regulation of CTLA-4 expression remains less well explored. We therefore studied the microRNA signature of circulating CD4(+) Tregs isolated from adult healthy donors and identified a signature composed of 15 differentially expressed microRNAs. Among those, miR-24, miR-145, and miR-210 were down-regulated in Tregs compared with controls and were found to have potential target sites in the 3'-UTR of FOXP3 and CTLA-4; miR-24 and miR-210 negatively regulated FOXP3 expression by directly binding to their two target sites in its 3'-UTR. On the other hand, miR-95, which is highly expressed in adult peripheral blood Tregs, positively regulated FOXP3 expression via an indirect mechanism yet to be identified. Finally, we showed that miR-145 negatively regulated CTLA-4 expression in human CD4(+) adult peripheral blood Tregs by binding to its target site in CTLA-4 transcript 3'-UTR. To our knowledge, this is the first identification of a human adult peripheral blood CD4(+) Treg microRNA signature. Moreover, unveiling one mechanism regulating CTLA-4 expression is novel and may lead to a better understanding of the regulation of this crucial gene.


Assuntos
Regiões 3' não Traduzidas/fisiologia , Antígeno CTLA-4/biossíntese , Fatores de Transcrição Forkhead/biossíntese , Regulação da Expressão Gênica/fisiologia , MicroRNAs/biossíntese , Linfócitos T Reguladores/metabolismo , Adulto , Antígeno CTLA-4/genética , Feminino , Fatores de Transcrição Forkhead/genética , Perfilação da Expressão Gênica , Células HEK293 , Células HeLa , Humanos , Masculino , MicroRNAs/genética
8.
J Transl Med ; 11: 31, 2013 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-23391324

RESUMO

BACKGROUND: MicroRNAs (miRNAs) are small (19-22-nt) single-stranded noncoding RNA molecules whose deregulation of expression can contribute to human disease including the multistep processes of carcinogenesis in human. Circulating miRNAs are emerging biomarkers in many diseases and cancers such as type 2 diabetes, pulmonary disease, colorectal cancer, and gastric cancer among others; however, defining a plasma miRNA signature in acute myeloblastic leukemia (AML) that could serve as a biomarker for diagnosis or in the follow-up has not been done yet. METHODS: TaqMan miRNA microarray was performed to identify deregulated miRNAs in the plasma of AML patients. Quantitative real-time RT-PCR was used to validate the results. Receiver-operator characteristic (ROC) curve analysis was conducted to evaluate the diagnostic accuracy of the highly and significantly identified deregulated miRNA(s) as potential candidate biomarker(s). RESULTS: The plasma expression level of let-7d, miR-150, miR-339, and miR-342 was down-regulated whilst that of let-7b, and miR-523 was up-regulated in the AML group at diagnosis compared to healthy controls. ROC curve analyses revealed an AUC (the areas under the ROC curve) of 0.835 (95% CI: 0.7119- 0.9581; P<0.0001) and 0.8125 (95% CI: 0.6796-0.9454; P=0.0005) for miR-150, and miR-342 respectively. Combined ROC analyses using these 2 miRNAs revealed an elevated AUC of 0.86 (95% CI: 0.7819-0.94; P<0.0001) indicating the additive effect in the diagnostic value of these 2 miRNAs. QRT-PCR results showed that the expression level of these two miRs in complete remission AML patients resembled that of healthy controls. CONCLUSIONS: Our findings indicated that plasma miR-150 and miR-342 are novel important promising biomarkers in the diagnosis of AML. These novel and promising markers warrant validation in larger prospective studies.


Assuntos
Biomarcadores Tumorais/sangue , Leucemia Mieloide Aguda/sangue , MicroRNAs/sangue , Área Sob a Curva , Biomarcadores Tumorais/genética , Estudos de Casos e Controles , Perfilação da Expressão Gênica , Humanos , Leucemia Mieloide Aguda/genética , MicroRNAs/genética , Análise de Sequência com Séries de Oligonucleotídeos , Curva ROC , Reação em Cadeia da Polimerase em Tempo Real
9.
Artigo em Inglês | MEDLINE | ID: mdl-37246921

RESUMO

CD4+CD25+ FOXP3+ regulatory T cells (Tregs) represent a subpopulation of CD4+ T cells central for the suppression of physiological and pathological immune reactions. Although distinct cell surface antigens are expressed in regulatory T cells, those components are also present on the surface of activated CD4+CD25- FOXP3-T cells, thus making the discrimination between Tregs and conventional CD4+ T difficult and isolation of Tregs complex. Yet, the molecular components driving Tregs' function are still not fully characterized. Aiming at unraveling molecular components specifically marking Tregs, and upon using quantitative real-time PCR (qRT-PCR) followed by bioinformatics analysis, we identified, in this study, differential transcriptional profiles, in peripheral blood CD4 + CD25 + CD127low FOXP3+ Tregs versus CD4 + CD25-FOXP3- conventional T cells, for set of genes with distinct immunological roles. In conclusion, this study identifies some novel genes that appeared to be differentially transcribed in CD4+ Tregs versus conventional T cells. The identified genes could serve as novel molecular targets relevant to Tregs' function and isolation.


Assuntos
Linfócitos T Reguladores , Transcriptoma , Humanos , Linfócitos T Reguladores/metabolismo , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo
10.
Front Immunol ; 13: 913951, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36189271

RESUMO

Currently, microRNAs have been established as central players in tumorigenesis, but above all, they have opened an important door for our understanding of immune and tumor cell communication. This dialog is largely due to onco-miR transfer from tumor cells to cells of the tumor microenvironment by exosome. This review outlines recent advances regarding the role of oncomiRs in enhancing cancer and how they modulate the cancer-related immune response in the tumor immune microenvironment. MicroRNAs (miRNAs) are a type of noncoding RNA that are important posttranscriptional regulators of messenger RNA (mRNA) translation into proteins. By regulating gene expression, miRNAs enhance or inhibit cancer development and participate in several cancer biological processes, including proliferation, invasion metastasis, angiogenesis, chemoresistance and immune escape. Consistent with their widespread effects, miRNAs have been categorized as oncogenes (oncomiRs) or tumor suppressor (TS) miRNAs. MiRNAs that promote tumor growth, called oncomiRs, inhibit messenger RNAs of TS genes and are therefore overexpressed in cancer. In contrast, TS miRNAs inhibit oncogene messenger RNAs and are therefore underexpressed in cancer. Endogenous miRNAs regulate different cellular pathways in all cell types. Therefore, they are not only key modulators in cancer cells but also in the cells constituting their microenvironments. Recently, it was shown that miRNAs are also involved in intercellular communication. Indeed, miRNAs can be transferred from one cell type to another where they regulate targeted gene expression. The primary carriers for the transfer of miRNAs from one cell to another are exosomes. Exosomes are currently considered the primary carriers for communication between the tumor and its surrounding stromal cells to support cancer progression and drive immune suppression. Exosome and miRNAs are seen by many as a hope for developing a new class of targeted therapy. This review outlines recent advances in understanding the role of oncomiRs in enhancing cancer and how they promote its aggressive characteristics and deeply discusses the role of oncomiRs in suppressing the anticancer immune response in its microenvironment. Additionally, further understanding the mechanism of oncomiR-related immune suppression will facilitate the use of miRNAs as biomarkers for impaired antitumor immune function, making them ideal immunotherapy targets.


Assuntos
MicroRNAs , Neoplasias , Genes Supressores de Tumor , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias/terapia , Oncogenes , RNA Mensageiro , Microambiente Tumoral/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA