Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
J Biol Chem ; 297(4): 101177, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34508778

RESUMO

The hepatic carbohydrate-recognizing asialoglycoprotein receptor (ASGR1) mediates the endocytosis/lysosomal degradation of desialylated glycoproteins following binding to terminal galactose/N-acetylgalactosamine. Human heterozygote carriers of ASGR1 deletions exhibit ∼34% lower risk of coronary artery disease and ∼10% to 14% reduction of non-HDL cholesterol. Since the proprotein convertase PCSK9 is a major degrader of the low-density lipoprotein receptor (LDLR), we investigated the degradation and functionality of LDLR and/or PCSK9 by endogenous/overexpressed ASGR1 using Western blot and immunofluorescence in HepG2-naïve and HepG2-PCSK9-knockout cells. ASGR1, like PCSK9, targets LDLR, and both independently interact with/enhance the degradation of the receptor. This lack of cooperativity between PCSK9 and ASGR1 was confirmed in livers of wildtype (WT) and Pcsk9-/- mice. ASGR1 knockdown in HepG2-naïve cells significantly increased total (∼1.2-fold) and cell-surface (∼4-fold) LDLR protein. In HepG2-PCSK9-knockout cells, ASGR1 silencing led to ∼2-fold higher levels of LDLR protein and DiI (1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate)-LDL uptake associated with ∼9-fold increased cell-surface LDLR. Overexpression of WT-ASGR1/2 primarily reduced levels of immature non-O-glycosylated LDLR (∼110 kDa), whereas the triple Ala-mutant of Gln240/Trp244/Glu253 (characterized by loss of carbohydrate binding) reduced expression of the mature form of LDLR (∼150 kDa), suggesting that ASGR1 binds the LDLR in both a sugar-dependent and -independent fashion. The protease furin cleaves ASGR1 at the RKMK103↓ motif into a secreted form, likely resulting in a loss of function on LDLR. Altogether, we demonstrate that LDLR is the first example of a liver-receptor ligand of ASGR1. We conclude that silencing of ASGR1 and PCSK9 may lead to higher LDL uptake by hepatocytes, thereby providing a novel approach to further reduce LDL cholesterol levels.


Assuntos
Receptor de Asialoglicoproteína/metabolismo , Furina/metabolismo , Fígado/metabolismo , Pró-Proteína Convertase 9/metabolismo , Receptores de LDL/metabolismo , Animais , Receptor de Asialoglicoproteína/genética , Furina/genética , Células HEK293 , Células Hep G2 , Humanos , Camundongos , Camundongos Knockout , Pró-Proteína Convertase 9/genética , Receptores de LDL/genética
2.
J Lipid Res ; 62: 100096, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34280453

RESUMO

Proprotein convertase subtilisin/kexin type 9 (PCSK9) promotes lysosomal degradation of the LDL receptor and is a key regulator of cholesterol metabolism. After the liver, the small intestine is the second organ that highly expresses PCSK9. However, the small intestine's ability to secrete PCSK9 remains a matter of debate. While liver-specific PCSK9-deficient mice present no PCSK9 in systemic blood, human intestinal Caco-2 cells can actively secrete PCSK9. This raises the possibility for active intestinal secretion via the portal blood. Here, we aimed to determine whether enterocytes can secrete PCSK9 using in vitro, ex vivo, and in vivo approaches. We first observed that PCSK9 secretion from Caco-2 cells was biphasic and dependent on Caco-2 maturation status. Transcriptional analysis suggested that this transient reduction in PCSK9 secretion might be due to loss of SREBP2-mediated transcription of PCSK9. Consistently, PCSK9 secretion was not detected ex vivo in human or mouse intestinal biopsies mounted in Ussing chambers. Finally, direct comparison of systemic versus portal blood PCSK9 concentrations in WT or liver-specific PCSK9-deficient mice confirmed the inability of the small intestine to secrete PCSK9 into the portal compartment. Altogether, our data demonstrate that mature enterocytes do not secrete PCSK9 and reinforce the central role of the liver in the regulation of the concentration of circulating PCSK9 and consequently of cellular LDL receptors.


Assuntos
Pró-Proteína Convertase 9/metabolismo , Animais , Células CACO-2 , Diferenciação Celular , Células Cultivadas , Humanos , Intestino Delgado/citologia , Intestino Delgado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Pró-Proteína Convertase 9/sangue , Pró-Proteína Convertase 9/deficiência
3.
Arterioscler Thromb Vasc Biol ; 40(9): 2084-2094, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32673528

RESUMO

OBJECTIVE: Increased postprandial lipemia (PPL) is an independent risk factor for atherosclerotic cardiovascular diseases. PCSK9 (Proprotein convertase subtilisin kexin type 9) is an endogenous inhibitor of the LDLR (low-density lipoprotein receptor) pathway. We previously showed that PCSK9 inhibition in mice reduces PPL. However, the relative contribution of intracellular intestinal PCSK9 or liver-derived circulating PCSK9 to this effect is still unclear. Approach and Results: To address this issue, we generated the first intestine-specific Pcsk9-deficient (i-Pcsk9-/-) mouse model. PPL was measured in i-Pcsk9-/- as well as in wild-type and streptozotocin-induced diabetic mice following treatment with a PCSK9 monoclonal antibody (alirocumab). Blocking the circulating form of PCSK9 with alirocumab significantly reduced PPL, while overexpressing human PCSK9 in the liver of full Pcsk9-/- mice had the opposite effect. Alirocumab regulated PPL in a LDLR-dependent manner as this effect was abolished in Ldlr-/- mice. In contrast, i-Pcsk9-/- mice did not exhibit alterations in plasma lipid parameters nor in PPL. Finally, PPL was highly exacerbated by streptozotocin-induced diabetes mellitus in Pcsk9+/+ but not in Pcsk9-/- mice, an effect that was mimicked by the use of alirocumab in streptozotocin-treated Pcsk9+/+ mice. CONCLUSIONS: Taken together, our data demonstrate that PPL is significantly altered by full but not intestinal PCSK9 deficiency. Treatment with a PCSK9 monoclonal antibody mimics the effect of PCSK9 deficiency on PPL suggesting that circulating PCSK9 rather than intestinal PCSK9 is a critical regulator of PPL. These data validate the clinical relevance of PCSK9 inhibitors to reduce PPL, especially in patients with type 2 diabetes mellitus.


Assuntos
Diabetes Mellitus Experimental/sangue , Diabetes Mellitus Tipo 2/sangue , Hiperlipidemias/sangue , Intestinos/enzimologia , Lipídeos/sangue , Pró-Proteína Convertase 9/sangue , Animais , Anticorpos Monoclonais Humanizados/farmacologia , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/enzimologia , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/enzimologia , Hiperlipidemias/enzimologia , Hiperlipidemias/genética , Hiperlipidemias/prevenção & controle , Hipolipemiantes/farmacologia , Intestinos/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Inibidores de PCSK9 , Período Pós-Prandial , Pró-Proteína Convertase 9/deficiência , Pró-Proteína Convertase 9/genética , Receptores de LDL/genética , Receptores de LDL/metabolismo
4.
Biol Chem ; 399(12): 1363-1374, 2018 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-30044755

RESUMO

Proprotein convertase subtilisin/kexin type 9 (PCSK9) is a secreted protein that binds and escorts the low density lipoprotein receptor (LDLR) into the lysosomal degradation pathway. Prescribed monoclonal antibodies (mAbs) against PCSK9 prevent its binding to the LDLR, and result in ~60% lower LDL cholesterol (LDLc) levels. Although efficient, mAbs are expensive. Hence other PCSK9 inhibitors are needed. For screening purpose, we developed C57BL/6J mice expressing the human PCSK9 gene under the control of its own promoter, but lacking endogenous mouse PCSK9. All lines recapitulate the endogenous PCSK9 expression pattern. The Tg2 line that expresses physiological levels of human PCSK9 (hPCSK9) was selected to characterize the inhibitory properties of a previously reported single domain antibody (sdAb), PKF8-mFc, which binds the C-terminal domain of PCSK9. Upon intraveinous injection of 10 mg/kg, PKF8-mFc and the mAb evolocumab neutralized ~50% and 100% of the hPCSK9 impact on total cholesterol (TC) levels, respectively, but PKF8-mFc had a more sustained effect. PKF8-mFc barely affected hPCSK9 levels, whereas evolocumab promoted a 4-fold increase 3 days post-injection, suggesting very different inhibitory mechanisms. The present study also shows that the new transgenic mice are well suited to screen a variety of hPCSK9 inhibitors.


Assuntos
Anticorpos Monoclonais/farmacologia , Cisteína/antagonistas & inibidores , Histidina/antagonistas & inibidores , Inibidores de PCSK9 , Animais , Anticorpos Monoclonais Humanizados , Cisteína/metabolismo , Genótipo , Histidina/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Pró-Proteína Convertase 9/deficiência , Pró-Proteína Convertase 9/metabolismo
6.
J Biol Chem ; 290(30): 18609-20, 2015 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-26085104

RESUMO

Amyloid precursor-like protein 2 (APLP2) and sortilin were reported to individually bind the proprotein convertase subtilisin/kexin type 9 (PCSK9) and regulate its activity on the low-density lipoprotein receptor (LDLR). The data presented herein demonstrate that mRNA knockdowns of APLP2, sortilin, or both in the human hepatocyte cell lines HepG2 and Huh7 do not affect the ability of extracellular PCSK9 to enhance the degradation of the LDLR. Furthermore, mice deficient in APLP2 or sortilin do not exhibit significant changes in liver LDLR or plasma total cholesterol levels. Moreover, cellular overexpression of one or both proteins does not alter PCSK9 secretion, or its activity on the LDLR. We conclude that PCSK9 enhances the degradation of the LDLR independently of either APLP2 or sortilin both ex vivo and in mice. Interestingly, when co-expressed with PCSK9, both APLP2 and sortilin were targeted for lysosomal degradation. Using chemiluminescence proximity and co-immunoprecipitation assays, as well as biosynthetic analysis, we discovered that sortilin binds and stabilizes APLP2, and hence could regulate its intracellular functions on other targets.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Pró-Proteína Convertases/metabolismo , Proteólise , Receptores de LDL/biossíntese , Serina Endopeptidases/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/biossíntese , Proteínas Adaptadoras de Transporte Vesicular/genética , Precursor de Proteína beta-Amiloide/genética , Animais , Regulação da Expressão Gênica , Células Hep G2 , Hepatócitos/metabolismo , Humanos , Fígado/metabolismo , Camundongos , Proteínas do Tecido Nervoso/genética , Pró-Proteína Convertase 9 , Pró-Proteína Convertases/genética , Receptores de LDL/genética , Serina Endopeptidases/genética
7.
J Lipid Res ; 56(11): 2133-42, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26323289

RESUMO

Proprotein convertase subtilisin kexin type 9 (PCSK9), the last member of the family of Proprotein Convertases related to Subtilisin and Kexin, regulates LDL-cholesterol by promoting the endosomal/lysosomal degradation of the LDL receptor (LDLR). Herein, we show that the LDLR cell surface levels dramatically increase in the liver and pancreatic islets of PCSK9 KO male but not female mice. In contrast, in KO female mice, the LDLR is more abundant at the cell surface enterocytes, as is the VLDL receptor (VLDLR) at the cell surface of adipocytes. Ovariectomy of KO female mice led to a typical KO male pattern, whereas 17ß-estradiol (E2) treatment restored the female pattern without concomitant changes in LDLR adaptor protein 1 (also known as ARH), disabled-2, or inducible degrader of the LDLR expression levels. We also show that this E2-mediated regulation, which is observed only in the absence of PCSK9, is abolished upon feeding the mice a high-cholesterol diet. The latter dramatically represses PCSK9 expression and leads to high surface levels of the LDLR in the hepatocytes of all sexes and genotypes. In conclusion, the absence of PCSK9 results in a sex- and tissue-specific subcellular distribution of the LDLR and VLDLR, which is determined by E2 levels.


Assuntos
Pró-Proteína Convertases/genética , Receptores de LDL/metabolismo , Serina Endopeptidases/genética , Adiposidade , Animais , Estradiol/fisiologia , Feminino , Gordura Intra-Abdominal/metabolismo , Fígado/enzimologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Especificidade de Órgãos , Pró-Proteína Convertase 9 , Pró-Proteína Convertases/sangue , Pró-Proteína Convertases/deficiência , Transporte Proteico , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Serina Endopeptidases/sangue , Serina Endopeptidases/deficiência , Caracteres Sexuais
8.
Metabolism ; 150: 155736, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37967646

RESUMO

BACKGROUND: Epidemiological evidence links the proprotein convertase subtilisin/kexin 7 (PCSK7) to triglyceride (TG) metabolism. We associated the known PCSK7 gain-of-function non-coding SNP rs236918 with higher levels of plasma apolipoprotein B (apoB) and the loss-of-function coding variant p.Pro777Leu (SNP rs201598301) with lower apoB and TG. Herein, we aimed to unravel the in vivo role of liver PCSK7. METHODS: We biochemically defined the functional role of PCSK7 in lipid metabolism using hepatic cell lines and Pcsk7-/- mice. Our findings were validated following subcutaneous administration of hepatocyte-targeted N-acetylgalactosamine (GalNAc)-antisense oligonucleotides (ASOs) against Pcsk7. RESULTS: Independent of its proteolytic activity, membrane-bound PCSK7 binds apoB100 in the endoplasmic reticulum and enhances its secretion. Mechanistically, the loss of PCSK7/Pcsk7 leads to apoB100 degradation, triggering an unfolded protein response, autophagy, and ß-oxidation, eventually reducing lipid accumulation in hepatocytes. Non-alcoholic fatty liver disease (NAFLD) was induced by a 12-week high fat/fructose/cholesterol diet in wild type (WT) and Pcsk7-/- mice that were then allowed to recover on a 4-week control diet. Pcsk7-/- mice recovered more effectively than WT mice from all NAFLD-related liver phenotypes. Finally, subcutaneous administration of GalNAc-ASOs targeting hepatic Pcsk7 to WT mice validated the above results. CONCLUSIONS: Our data reveal hepatic PCSK7 as one of the major regulators of apoB, and its absence reduces apoB secretion from hepatocytes favoring its ubiquitination and degradation by the proteasome. This results in a cascade of events, eventually reducing hepatic lipid accumulation, thus supporting the notion of silencing PCSK7 mRNA in hepatocytes for targeting NAFLD.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Camundongos , Animais , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo , Subtilisina/metabolismo , Triglicerídeos/metabolismo , Fígado/metabolismo , Apolipoproteínas B/genética , Apolipoproteínas B/metabolismo , Pró-Proteína Convertases/metabolismo , Apolipoproteína B-100/genética , Apolipoproteína B-100/metabolismo
9.
Arterioscler Thromb Vasc Biol ; 31(4): 785-91, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21273557

RESUMO

OBJECTIVE: Proprotein convertase subtilisin/kexin 9 (PCSK9) promotes the degradation of the low-density lipoprotein receptor (LDLR), and its gene is the third locus implicated in familial hypercholesterolemia. Herein, we investigated the role of PCSK9 in adipose tissue metabolism. METHODS AND RESULTS: At 6 months of age, Pcsk9(-/-) mice accumulated ≈80% more visceral adipose tissue than wild-type mice. This was associated with adipocyte hypertrophy and increased in vivo fatty acid uptake and ex vivo triglyceride synthesis. Moreover, adipocyte hypertrophy was also observed in Pcsk9(-/-) Ldlr(-/-) mice, indicating that the LDLR is not implicated. Rather, we show here by immunohistochemistry that Pcsk9(-/-) males and females exhibit 4- and ≈ 40-fold higher cell surface levels of very-low-density lipoprotein receptor (VLDLR) in perigonadal depots, respectively. Expression of PCSK9 in the liver of Pcsk9(-/-) females reestablished both circulating PCSK9 and normal VLDLR levels. In contrast, specific inactivation of PCSK9 in the liver of wild-type females led to ≈ 50-fold higher levels of perigonadal VLDLR. CONCLUSIONS: In vivo, endogenous PCSK9 regulates VLDLR protein levels in adipose tissue. This regulation is achieved by circulating PCSK9 that originates entirely in the liver. PCSK9 is thus pivotal in fat metabolism: it maintains high circulating cholesterol levels via hepatic LDLR degradation, but it also limits visceral adipogenesis likely via adipose VLDLR regulation.


Assuntos
Adipócitos/enzimologia , Adiposidade , Gordura Intra-Abdominal/enzimologia , Receptores de LDL/metabolismo , Serina Endopeptidases/metabolismo , Triglicerídeos/metabolismo , Adipócitos/patologia , Adiposidade/genética , Fatores Etários , Animais , Colesterol/metabolismo , Feminino , Homeostase , Hidrólise , Hipertrofia , Imuno-Histoquímica , Gordura Intra-Abdominal/patologia , Fígado/enzimologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Ácido Oleico/metabolismo , Pró-Proteína Convertase 9 , Pró-Proteína Convertases , Receptores de LDL/deficiência , Receptores de LDL/genética , Serina Endopeptidases/sangue , Serina Endopeptidases/deficiência , Serina Endopeptidases/genética , Fatores Sexuais
10.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1867(12): 159217, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35985474

RESUMO

PCSK9 promotes the lysosomal degradation of cell surface LDL receptor (LDLR). We analyzed how excess LDLR generated by PCSK9 deficiency is differently handled in male and female mice to possibly unveil the mechanism leading to the lower efficacy of PCSK9 mAb on LDL-cholesterol levels in women. Analysis of intact or ovariectomized PCSK9 knockout (KO) mice supplemented with placebo or 17ß-estradiol (E2) demonstrated that female, but not male mice massively shed the soluble ectodomain of the LDLR in the plasma. Liver-specific PCSK9 KO or alirocumab-treated WT mice exhibit the same pattern. This shedding is distinct from the basal one and is inhibited by ZLDI-8, a metalloprotease inhibitor pointing at ADAM10/ADAM17. In PCSK9 KO female mice, ZLDI-8 raises by 80 % the LDLR liver content in a few hours. This specific shedding is likely cholesterol-dependent: it is prevented in PCSK9 KO male mice that exhibit low intra-hepatic cholesterol levels without activating SREBP-2, and enhanced by mevalonate or high cholesterol feeding, or by E2 known to stimulate cholesterol synthesis via the estrogen receptor-α. Liver transcriptomics demonstrates that critically low liver cholesterol in ovariectomized female or knockout male mice also hampers the cholesterol-dependent G2/M transition of the cell cycle. Finally, higher levels of shed LDLR were measured in the plasma of women treated with PCSK9 mAb. PCSK9 knockout female mice hormonally sustain cholesterol synthesis and shed excess LDLR, seemingly like women. In contrast, male mice rely on high surface LDLR to replenish their stocks, despite 80 % lower circulating LDL.


Assuntos
Ácido Mevalônico , Pró-Proteína Convertase 9 , Animais , Colesterol/metabolismo , Estradiol/metabolismo , Estradiol/farmacologia , Feminino , Fígado/metabolismo , Metaloproteases/metabolismo , Ácido Mevalônico/metabolismo , Camundongos , Camundongos Knockout , Pró-Proteína Convertase 9/metabolismo , Receptores de Superfície Celular , Receptores de Estrogênio , Receptores de LDL/genética , Receptores de LDL/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo
11.
Artigo em Inglês | MEDLINE | ID: mdl-33992809

RESUMO

Proprotein convertase subtilisin/kexin type 9 (PCSK9) plays an important role in cholesterol homeostasis by promoting the degradation of the LDL receptor (LDLR). PCSK9 loss-of-function mutations are associated with increased fasting plasma glucose levels and slightly elevated risk of type 2-diabetes. Considering the known detrimental effects of cholesterol accumulation in ß-cell, and the widespread use of PCSK9 inhibitors to treat hypercholesterolemia, it is important to gain insight into the role of pancreatic PCSK9 in glucose homeostasis and ß-cell function. We generated the first ß-cell-specific KO of PCSK9 (ßKO). PCSK9 mRNA and protein expression were reduced by 48% and 78% in ßKO islets, respectively, indicating that ß-cells constitute a major site of PCSK9 expression. In islets, loss of ß-cell PCSK9 resulted in unchanged LDLR protein levels, but reduced LDLR mRNA, indicating that cholesterol internalization is enhanced and that ß-cell PCSK9 promotes LDLR degradation. In contrast, whole body PCSK9 KO mice exhibited 2-fold higher LDLR protein levels in islets and a stable expression of cholesterogenic genes. Whole body KO and ßKO mice presented normal glucose tolerance, insulin release in response to glucose load and insulin sensitivity. Ex vivo glucose-stimulated insulin secretion in presence or absence of fatty acids was similar in WT and KO islets. Like KO mice, individuals carrying loss-of-function PCSK9 variants may be protected from cholesterol-induced toxicity due to reduced circulating cholesterol levels. Using both whole body KO or ßKO models, our data demonstrate that PCSK9 deletion in mouse does not have any toxic effect on ß-cell function and glucose homeostasis.


Assuntos
Glucose/metabolismo , Homeostase , Secreção de Insulina , Células Secretoras de Insulina/metabolismo , Pró-Proteína Convertase 9/deficiência , Pró-Proteína Convertase 9/genética , Animais , Ativação Enzimática , Técnicas de Inativação de Genes , Camundongos
12.
FEBS J ; 287(16): 3565-3578, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-31945259

RESUMO

The locus of the human proprotein convertase subtilisin-kexin type-7 (PC7) gene (PCSK7) is on chromosome 11q23.3 close to the gene cluster APOA5/APOA4/APOC3/APOA1, a region implicated in the regulation of lipoprotein metabolism. A GWAS reported the association of PCSK7 SNPs with plasma triglyceride (TG), and exome sequencing of African Americans revealed the association of a low-frequency coding variant of PC7 (R504H; SNP rs142953140) with a ~ 30% TG reduction. Another PCSK7 SNP rs508487 is in linkage disequilibrium with a promoter variant of the liver-derived apolipoprotein A-V (apoA-V), an indirect activator of the lipoprotein lipase (LpL), and is associated with elevated TG levels. We thus hypothesized that PC7 regulates the levels/activity of apoA-V. Studies in the human hepatic cell line HuH7 revealed that wild-type (WT) PC7 and its endoplasmic reticulum (ER)-retained forms bind to and enhance the degradation of human apoA-V in acidic lysosomes in a nonenzymatic fashion. PC7-induced degradation of apoA-V is inhibited by bafilomycin A1 and the alkalinizing agents: chloroquine and NH4 Cl. Thus, the PC7-induced apoA-V degradation implicates an ER-lysosomal communication inhibited by bafilomycin A1. In vitro, the natural R504H mutant enhances PC7 Ser505 phosphorylation at the structurally exposed Ser-X-Glu507 motif recognized by the secretory kinase Fam20C. Co-expression of the phosphomimetic PC7-S505E with apoA-V resulted in lower degradation compared to WT, suggesting that Ser505 phosphorylation of PC7 lowers TG levels via reduced apoA-V degradation. In agreement, in Pcsk7-/- mice fed high-fat diet, plasma apoA-V levels and adipocyte LpL activity are increased, providing an in vivo mechanistic link for a role of liver PC7 in enhanced TG storage in adipocytes.


Assuntos
Apolipoproteína A-V/metabolismo , Fígado/metabolismo , Subtilisinas/genética , Triglicerídeos/metabolismo , Animais , Apolipoproteína A-V/sangue , Linhagem Celular Tumoral , Retículo Endoplasmático/metabolismo , Hepatócitos/metabolismo , Humanos , Lisossomos/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Polimorfismo de Nucleotídeo Único , Subtilisinas/metabolismo , Triglicerídeos/sangue , Sequenciamento do Exoma/métodos
13.
Hepatology ; 48(2): 646-54, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18666258

RESUMO

UNLABELLED: The gene encoding the proprotein convertase subtilisin/kexin type 9 (PCSK9) is linked to familial hypercholesterolemia, as are those of the low-density lipoprotein receptor (LDLR) and apolipoprotein B. PCSK9 enhances LDLR degradation, resulting in low-density lipoprotein accumulation in plasma. To analyze the role of hepatic PCSK9, total and hepatocyte-specific knockout mice were generated. They exhibit 42% and 27% less circulating cholesterol, respectively, showing that liver PCSK9 was responsible for two thirds of the phenotype. We also demonstrated that, in liver, PCSK9 is exclusively expressed in hepatocytes, representing the main source of circulating PCSK9. The data suggest that local but not circulating PCSK9 regulates cholesterol levels. Although transgenic mice overexpressing high levels of liver and circulating PCSK9 led to the almost complete disappearance of the hepatic LDLR, they did not recapitulate the plasma cholesterol levels observed in LDLR-deficient mice. Single LDLR or double LDLR/PCSK9 knockout mice exhibited similar cholesterol profiles, indicating that PCSK9 regulates cholesterol homeostasis exclusively through the LDLR. Finally, the regenerating liver of PCSK9-deficient mice exhibited necrotic lesions, which were prevented by a high-cholesterol diet. However, lipid accumulation in hepatocytes of these mice was markedly reduced under both chow and high-cholesterol diets, revealing that PCSK9 deficiency confers resistance to liver steatosis. CONCLUSION: Although PCSK9 is a target for controlling hypercholesterolemia, our data indicate that upon hepatic damage, patients lacking PCSK9 could be at risk.


Assuntos
Hepatócitos/metabolismo , Regeneração Hepática/fisiologia , Receptores de LDL/metabolismo , Serina Endopeptidases/metabolismo , Animais , Colesterol/sangue , Colesterol na Dieta/administração & dosagem , Fígado Gorduroso/prevenção & controle , Hepatectomia/métodos , Imunidade Inata , Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Necrose , Pró-Proteína Convertase 9 , Pró-Proteína Convertases , Receptores de LDL/deficiência , Serina Endopeptidases/sangue , Serina Endopeptidases/deficiência , Distribuição Tecidual , Regulação para Cima
15.
Angiology ; 67(2): 157-67, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25904765

RESUMO

BACKGROUND: Given the link between cholesterol and activation of inflammation via interleukin 1ß (IL-1ß), we tested the effects of IL-1ß inhibition on atherosclerotic calcification in mice. Patients with familial hypercholesterolemia develop extensive aortic calcification and calcific aortic stenosis. Although statins delay this process, low-density lipoprotein (LDL) cholesterol lowering alone is not enough to avert it. Data suggest that vascular inflammation initiated by hypercholesterolemia is followed by unchecked mineralization at sites of atherosclerotic plaques. The LDL-receptor (LDLR)-deficient (Ldlr(-/-)) and LDLR-attenuated Pcsk9(Tg) mice are available animal models for pharmacological testing. METHODS: A mouse monoclonal antibody (mAb) against IL-1ß or placebo was administered subcutaneously in Ldlr(-/-) and Pcsk9(Tg) models fed a Western diet. Drug level, anthropometric, lipid, and glucose profiles were determined. Expressions of proprotein convertase subtilisin/kexin type 9 (PCSK9), serum amyloid A1, and cytokine were measured by enzyme-linked immunosorbent assay. Aortic calcification was determined by microcomputerized tomography (micro-CT) and X-ray densitometry, and aortic flow velocity was assessed by ultrasound. RESULTS: Circulating levels of IL-1ß in Ldlr(-/-) mice were significantly greater (2-fold) than observed in Pcsk9(Tg) mice. Placebo- and mAb-treated mice did not differ in their growth, lipid, glucose profiles, and other cytokines. Calcifications were significantly diminished in mAb-treatment Ldlr(-/-) mice (a reduction of ∼ 75% by X-ray and ∼ 90% by micro-CT) and reduced insignificantly in mAb-treatment Pcsk9(Tg) mice, whereas aortic flow velocity was unchanged in both models. CONCLUSIONS: Herein, we demonstrate that aortic calcifications can be inhibited by an IL-1ß mAb in LDLR-deficient mice. These results have a translational component to prevent vascular calcification in human and represent new evidence to rationalize targeting inflammation in cardiovascular disease.


Assuntos
Anti-Inflamatórios/farmacologia , Anticorpos Monoclonais/farmacologia , Aorta/efeitos dos fármacos , Doenças da Aorta/prevenção & controle , Hiperlipoproteinemia Tipo II/tratamento farmacológico , Interleucina-1beta/antagonistas & inibidores , Calcificação Vascular/prevenção & controle , Animais , Aorta/diagnóstico por imagem , Aorta/metabolismo , Aorta/fisiopatologia , Doenças da Aorta/sangue , Doenças da Aorta/diagnóstico , Doenças da Aorta/genética , Doenças da Aorta/imunologia , Doenças da Aorta/fisiopatologia , Aortografia/métodos , Biomarcadores/sangue , Velocidade do Fluxo Sanguíneo , Modelos Animais de Doenças , Predisposição Genética para Doença , Hiperlipoproteinemia Tipo II/sangue , Hiperlipoproteinemia Tipo II/genética , Hiperlipoproteinemia Tipo II/imunologia , Interleucina-1beta/sangue , Interleucina-1beta/imunologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fenótipo , Pró-Proteína Convertases/genética , Pró-Proteína Convertases/metabolismo , Receptores de LDL/deficiência , Receptores de LDL/genética , Fluxo Sanguíneo Regional , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo , Ultrassonografia , Calcificação Vascular/diagnóstico , Calcificação Vascular/genética , Calcificação Vascular/imunologia , Calcificação Vascular/metabolismo , Calcificação Vascular/fisiopatologia , Microtomografia por Raio-X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA