Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
J Biol Chem ; 291(9): 4698-710, 2016 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-26677218

RESUMO

Production of energy in a cell must keep pace with demand. Photoreceptors use ATP to maintain ion gradients in darkness, whereas in light they use it to support phototransduction. Matching production with consumption can be accomplished by coupling production directly to consumption. Alternatively, production can be set by a signal that anticipates demand. In this report we investigate the hypothesis that signaling through phototransduction controls production of energy in mouse retinas. We found that respiration in mouse retinas is not coupled tightly to ATP consumption. By analyzing metabolic flux in mouse retinas, we also found that phototransduction slows metabolic flux through glycolysis and through intermediates of the citric acid cycle. We also evaluated the relative contributions of regulation of the activities of α-ketoglutarate dehydrogenase and the aspartate-glutamate carrier 1. In addition, a comprehensive analysis of the retinal metabolome showed that phototransduction also influences steady-state concentrations of 5'-GMP, ribose-5-phosphate, ketone bodies, and purines.


Assuntos
Sinalização do Cálcio/efeitos da radiação , Metabolismo Energético/efeitos da radiação , Proteínas do Olho/metabolismo , Subunidades alfa de Proteínas de Ligação ao GTP/metabolismo , Proteínas Heterotriméricas de Ligação ao GTP/metabolismo , Transdução de Sinal Luminoso , Retina/efeitos da radiação , Transducina/metabolismo , Sistemas de Transporte de Aminoácidos Acídicos/metabolismo , Animais , Antiporters/metabolismo , Ciclo do Ácido Cítrico/efeitos da radiação , GMP Cíclico/metabolismo , Transporte de Elétrons/efeitos da radiação , Proteínas do Olho/genética , Subunidades alfa de Proteínas de Ligação ao GTP/genética , Glicólise/efeitos da radiação , Proteínas Heterotriméricas de Ligação ao GTP/genética , Complexo Cetoglutarato Desidrogenase/metabolismo , Luz , Metaboloma/efeitos da radiação , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Consumo de Oxigênio/efeitos da radiação , Retina/enzimologia , Retina/metabolismo , Técnicas de Cultura de Tecidos , Transducina/genética
2.
Biochem J ; 473(23): 4443-4456, 2016 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-27729543

RESUMO

A real-time method to measure intracellular hydrogen peroxide (H2O2) would be very impactful in characterizing rapid changes that occur in physiologic and pathophysiologic states. Current methods do not provide the sensitivity, specificity and spatiotemporal resolution needed for such experiments on intact cells. We developed the use of HyPer, a genetic indicator for H2O2 that can be expressed in the cytosol (cyto-HyPer) or the mitochondria (mito-HyPer) of live cells. INS-1 cells or islets were permeabilized and the cytosolic HyPer signal was a linear function of extracellular H2O2, allowing fluorescent cyto-HyPer signals to be converted into H2O2 concentrations. Glucose increased cytosolic H2O2, an effect that was suppressed by overexpression of catalase. Large perturbations in pH can influence the HyPer signal, but inclusion of HEPES [4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid] in the perfusate prevented pH changes, but did not affect glucose-induced cyto-HyPer signals, suggesting that this effect is largely pH-independent. Using the assay, two fundamental questions were addressed. Knockdown of superoxide dismutase 2 (SOD2), the mitochondrial form of SOD, completely suppressed glucose-induced H2O2 Furthermore, glucose also induced mitochondrial superoxide and H2O2 production, which preceded the appearance of cytosolic H2O2 Therefore, glucose-induced H2O2 largely originated from mitochondria. Finally, the glucose-induced HyPer signal was less than 1/20th of that induced by toxic levels of H2O2 Overall, the use of HyPer for real-time imaging allowed resolution of acute changes in intracellular levels of H2O2 and will have great utility for islet studies involving mechanisms of H2O2-mediated signaling and oxidative stress.


Assuntos
Peróxido de Hidrogênio/metabolismo , Ilhotas Pancreáticas/metabolismo , Animais , Catalase/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Insulina/metabolismo , Masculino , Mitocôndrias/metabolismo , Estresse Oxidativo , Consumo de Oxigênio , Propídio/metabolismo , Ratos , Ratos Sprague-Dawley , Superóxido Dismutase/metabolismo , Superóxidos/metabolismo
3.
J Biol Chem ; 289(27): 19110-9, 2014 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-24841202

RESUMO

The aim of the study was to assess the relative control of insulin secretion rate (ISR) by calcium influx and signaling from cytochrome c in islets where, as in diabetes, the metabolic pathways are impaired. This was achieved either by culturing isolated islets at low (3 mm) glucose or by fasting rats prior to the isolation of the islets. Culture in low glucose greatly reduced the glucose response of cytochrome c reduction and translocation and ISR, but did not affect the response to the mitochondrial fuel α-ketoisocaproate. Unexpectedly, glucose-stimulated calcium influx was only slightly reduced in low glucose-cultured islets and was not responsible for the impairment in glucose-stimulated ISR. A glucokinase activator acutely restored cytochrome c reduction and translocation and ISR, independent of effects on calcium influx. Islets from fasted rats had reduced ISR and cytochrome c reduction in response to both glucose and α-ketoisocaproate despite normal responses of calcium. Our data are consistent with the scenario where cytochrome c reduction and translocation are essential signals in the stimulation of ISR, the loss of which can result in impaired ISR even when calcium response is normal.


Assuntos
Sinalização do Cálcio , Citocromos c/metabolismo , Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Ilhotas Pancreáticas/patologia , Doenças Metabólicas/metabolismo , Doenças Metabólicas/patologia , Animais , Sinalização do Cálcio/efeitos dos fármacos , Relação Dose-Resposta a Droga , Metabolismo Energético/efeitos dos fármacos , Jejum , Glucose/farmacologia , Glicólise/efeitos dos fármacos , Técnicas In Vitro , Secreção de Insulina , Ilhotas Pancreáticas/efeitos dos fármacos , Cetoácidos/farmacologia , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Oxirredução , Oxigênio/metabolismo , Transporte Proteico/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley
4.
J Biol Chem ; 288(50): 36129-40, 2013 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-24187136

RESUMO

Transport of pyruvate into mitochondria by the mitochondrial pyruvate carrier is crucial for complete oxidation of glucose and for biosynthesis of amino acids and lipids. Zaprinast is a well known phosphodiesterase inhibitor and lead compound for sildenafil. We found Zaprinast alters the metabolomic profile of mitochondrial intermediates and amino acids in retina and brain. This metabolic effect of Zaprinast does not depend on inhibition of phosphodiesterase activity. By providing (13)C-labeled glucose and glutamine as fuels, we found that the metabolic profile of the Zaprinast effect is nearly identical to that of inhibitors of the mitochondrial pyruvate carrier. Both stimulate oxidation of glutamate and massive accumulation of aspartate. Moreover, Zaprinast inhibits pyruvate-driven O2 consumption in brain mitochondria and blocks mitochondrial pyruvate carrier in liver mitochondria. Inactivation of the aspartate glutamate carrier in retina does not attenuate the metabolic effect of Zaprinast. Our results show that Zaprinast is a potent inhibitor of mitochondrial pyruvate carrier activity, and this action causes aspartate to accumulate at the expense of glutamate. Our findings show that Zaprinast is a specific mitochondrial pyruvate carrier (MPC) inhibitor and may help to elucidate the roles of MPC in amino acid metabolism and hypoglycemia.


Assuntos
Ácido Aspártico/metabolismo , Ácido Glutâmico/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Purinonas/farmacologia , Ácido Pirúvico/metabolismo , Retina/citologia , Animais , Transporte Biológico/efeitos dos fármacos , Encéfalo/citologia , Ciclo do Ácido Cítrico/efeitos dos fármacos , Metabolômica , Camundongos , Neurônios/citologia , Neurônios/efeitos dos fármacos , Oxigênio/metabolismo
5.
J Bacteriol ; 193(21): 6032-8, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21873495

RESUMO

In Gram-negative methylotrophic bacteria, the first step in methylotrophic growth is the oxidation of methanol to formaldehyde in the periplasm by methanol dehydrogenase. In most organisms studied to date, this enzyme consists of the MxaF and MxaI proteins, which make up the large and small subunits of this heterotetrameric enzyme. The Methylobacterium extorquens AM1 genome contains two homologs of MxaF, XoxF1 and XoxF2, which are ∼50% identical to MxaF and ∼90% identical to each other. It was previously reported that xoxF is not required for methanol growth in M. extorquens AM1, but here we show that when both xoxF homologs are absent, strains are unable to grow in methanol medium and lack methanol dehydrogenase activity. We demonstrate that these defects result from the loss of gene expression from the mxa promoter and suggest that XoxF is part of a complex regulatory cascade involving the 2-component systems MxcQE and MxbDM, which are required for the expression of the methanol dehydrogenase genes.


Assuntos
Oxirredutases do Álcool/biossíntese , Regulação Bacteriana da Expressão Gênica , Expressão Gênica , Methylobacterium extorquens/enzimologia , Methylobacterium extorquens/genética , Oxirredutases do Álcool/genética , Meios de Cultura/química , Formaldeído/metabolismo , Metanol/metabolismo , Methylobacterium extorquens/crescimento & desenvolvimento , Methylobacterium extorquens/metabolismo , Homologia de Sequência de Aminoácidos
6.
Elife ; 102021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34596045

RESUMO

Hypoxic adaptation mediated by HIF transcription factors requires mitochondria, which have been implicated in regulating HIF1α stability in hypoxia by distinct models that involve consuming oxygen or alternatively converting oxygen into the second messenger peroxide. Here, we use a ratiometric, peroxide reporter, HyPer to evaluate the role of peroxide in regulating HIF1α stability. We show that antioxidant enzymes are neither homeostatically induced nor are peroxide levels increased in hypoxia. Additionally, forced expression of diverse antioxidant enzymes, all of which diminish peroxide, had disparate effects on HIF1α protein stability. Moreover, decrease in lipid peroxides by glutathione peroxidase-4 or superoxide by mitochondrial SOD, failed to influence HIF1α protein stability. These data show that mitochondrial, cytosolic or lipid ROS were not necessary for HIF1α stability, and favor a model where mitochondria contribute to hypoxic adaptation as oxygen consumers.


Assuntos
Hipóxia Celular , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Peróxidos/metabolismo , Animais , Células HeLa , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Masculino , Camundongos , Mitocôndrias/metabolismo , Estabilidade Proteica , Ratos , Ratos Sprague-Dawley , Transdução de Sinais
7.
Invest Ophthalmol Vis Sci ; 62(14): 20, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34797906

RESUMO

Purpose: The purpose of this study was to present our hypothesis that aging alters metabolic function in ocular tissues. We tested the hypothesis by measuring metabolism in aged murine tissues alongside retinal responses to light. Methods: Scotopic and photopic electroretinogram (ERG) responses in young (3-6 months) and aged (23-26 months) C57Bl/6J mice were recorded. Metabolic flux in retina and eyecup explants was quantified using U-13C-glucose or U-13C-glutamine with gas chromatography-mass spectrometry (GC-MS), O2 consumption rate (OCR) in a perifusion apparatus, and quantifying adenosine triphosphatase (ATP) with a bioluminescence assay. Results: Scotopic and photopic ERG responses were reduced in aged mice. Glucose metabolism, glutamine metabolism, OCR, and ATP pools in retinal explants were mostly unaffected in aged mice. In eyecups, glutamine usage in the Krebs Cycle decreased while glucose metabolism, OCR, and ATP pools remained stable. Conclusions: Our examination of metabolism showed negligible impact of age on retina and an impairment of glutamine anaplerosis in eyecups. The metabolic stability of these tissues ex vivo suggests age-related metabolic alterations may not be intrinsic. Future experiments should focus on determining whether external factors including nutrient supply, oxygen availability, or structural changes influence ocular metabolism in vivo.


Assuntos
Envelhecimento/fisiologia , Retina/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Visão de Cores/fisiologia , Eletrorretinografia , Fusão Flicker/fisiologia , Cromatografia Gasosa-Espectrometria de Massas , Glucose/metabolismo , Glutamina/metabolismo , Luz , Masculino , Metabolômica , Camundongos , Camundongos Endogâmicos C57BL , Visão Noturna/fisiologia , Consumo de Oxigênio/fisiologia , Estimulação Luminosa
8.
Cell Rep ; 31(5): 107606, 2020 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-32375026

RESUMO

When O2 is plentiful, the mitochondrial electron transport chain uses it as a terminal electron acceptor. However, the mammalian retina thrives in a hypoxic niche in the eye. We find that mitochondria in retinas adapt to their hypoxic environment by reversing the succinate dehydrogenase reaction to use fumarate to accept electrons instead of O2. Reverse succinate dehydrogenase activity produces succinate and is enhanced by hypoxia-induced downregulation of cytochrome oxidase. Retinas can export the succinate they produce to the neighboring O2-rich retinal pigment epithelium-choroid complex. There, succinate enhances O2 consumption by severalfold. Malate made from succinate in the pigment epithelium can then be imported into the retina, where it is converted to fumarate to again accept electrons in the reverse succinate dehydrogenase reaction. This malate-succinate shuttle can sustain these two tissues by transferring reducing power from an O2-poor tissue (retina) to an O2-rich one (retinal pigment epithelium-choroid).


Assuntos
Mitocôndrias/efeitos dos fármacos , Consumo de Oxigênio/efeitos dos fármacos , Retina/efeitos dos fármacos , Epitélio Pigmentado da Retina/efeitos dos fármacos , Succinatos/farmacologia , Animais , Complexo IV da Cadeia de Transporte de Elétrons/efeitos dos fármacos , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Mitocôndrias/metabolismo , Oxirredução/efeitos dos fármacos , Consumo de Oxigênio/fisiologia , Retina/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Succinatos/metabolismo
9.
Islets ; 11(3): 51-64, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31084524

RESUMO

The aim of the study was to determine the acute contribution of fuel oxidation in mediating the increase in insulin secretion rate (ISR) in response to fatty acids. Measures of mitochondrial metabolism, as reflected by oxygen consumption rate (OCR) and cytochrome c reduction, calcium signaling, and ISR by rat islets were used to evaluate processes stimulated by acute exposure to palmitic acid (PA). The contribution of mitochondrial oxidation of PA was determined in the presence and absence of a blocker of mitochondrial transport of fatty acids (etomoxir) at different glucose concentrations. Subsequent to increasing glucose from 3 to 20 mM, PA caused small increases in OCR and cytosolic calcium (about 20% of the effect of glucose). In contrast, the effect of PA on ISR was almost 3 times that by glucose, suggesting that the metabolism of PA is not the dominant mechanism mediating PA's effect on ISR. This was further supported by lack of inhibition of PA-stimulated OCR and ISR when blocking entry of PA into mitochondria (with etomoxir), and PA's lack of stimulation of reduced cytochrome c in the presence of high glucose. Consistent with the lack of metabolic stimulation by PA, an inhibitor of calcium release from the endoplasmic reticulum, but not a blocker of L-type calcium channels, abolished the PA-induced elevation of cytosolic calcium. Notably, ISR was unaffected by thapsigargin showing the dissociation of endoplasmic reticulum calcium release and second phase insulin secretion. In conclusion, stimulation of ISR by PA was mediated by mechanisms largely independent of the oxidation of the fuel.


Assuntos
Cálcio/metabolismo , Retículo Endoplasmático/metabolismo , Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Palmitatos/metabolismo , Animais , Retículo Endoplasmático/efeitos dos fármacos , Insulina/agonistas , Ilhotas Pancreáticas/efeitos dos fármacos , Masculino , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Oxirredução/efeitos dos fármacos , Consumo de Oxigênio/efeitos dos fármacos , Palmitatos/farmacologia , Ratos , Ratos Sprague-Dawley
10.
Cell Rep ; 28(3): 759-772.e10, 2019 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-31315053

RESUMO

Mechanisms coordinating pancreatic ß cell metabolism with insulin secretion are essential for glucose homeostasis. One key mechanism of ß cell nutrient sensing uses the mitochondrial GTP (mtGTP) cycle. In this cycle, mtGTP synthesized by succinyl-CoA synthetase (SCS) is hydrolyzed via mitochondrial PEPCK (PEPCK-M) to make phosphoenolpyruvate, a high-energy metabolite that integrates TCA cycling and anaplerosis with glucose-stimulated insulin secretion (GSIS). Several strategies, including xenotopic overexpression of yeast mitochondrial GTP/GDP exchanger (GGC1) and human ATP and GTP-specific SCS isoforms, demonstrated the importance of the mtGTP cycle. These studies confirmed that mtGTP triggers and amplifies normal GSIS and rescues defects in GSIS both in vitro and in vivo. Increased mtGTP synthesis enhanced calcium oscillations during GSIS. mtGTP also augmented mitochondrial mass, increased insulin granule number, and membrane proximity without triggering de-differentiation or metabolic fragility. These data highlight the importance of the mtGTP signal in nutrient sensing, insulin secretion, mitochondrial maintenance, and ß cell health.


Assuntos
Trifosfato de Adenosina/metabolismo , Glucose/metabolismo , Guanosina Trifosfato/metabolismo , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Mitocôndrias/metabolismo , Succinato-CoA Ligases/metabolismo , Animais , Diferenciação Celular/genética , Linhagem Celular , Proliferação de Células/genética , Ciclo do Ácido Cítrico/genética , Homeostase , Humanos , Secreção de Insulina/genética , Secreção de Insulina/fisiologia , Células Secretoras de Insulina/enzimologia , Células Secretoras de Insulina/ultraestrutura , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microscopia Eletrônica de Transmissão , Mitocôndrias/enzimologia , Mitocôndrias/ultraestrutura , Membranas Mitocondriais/metabolismo , Fosforilação Oxidativa , Fosfoenolpiruvato Carboxiquinase (ATP)/metabolismo , Regulação para Cima
11.
Elife ; 62017 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-28901286

RESUMO

Here we report multiple lines of evidence for a comprehensive model of energy metabolism in the vertebrate eye. Metabolic flux, locations of key enzymes, and our finding that glucose enters mouse and zebrafish retinas mostly through photoreceptors support a conceptually new model for retinal metabolism. In this model, glucose from the choroidal blood passes through the retinal pigment epithelium to the retina where photoreceptors convert it to lactate. Photoreceptors then export the lactate as fuel for the retinal pigment epithelium and for neighboring Müller glial cells. We used human retinal epithelial cells to show that lactate can suppress consumption of glucose by the retinal pigment epithelium. Suppression of glucose consumption in the retinal pigment epithelium can increase the amount of glucose that reaches the retina. This framework for understanding metabolic relationships in the vertebrate retina provides new insights into the underlying causes of retinal disease and age-related vision loss.


Assuntos
Adaptação Ocular , Metabolismo Energético , Células Ependimogliais/fisiologia , Células Fotorreceptoras/fisiologia , Epitélio Pigmentado da Retina/fisiologia , Animais , Células Ependimogliais/metabolismo , Glucose/metabolismo , Humanos , Lactatos/metabolismo , Camundongos , Células Fotorreceptoras/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Peixe-Zebra
12.
Heliyon ; 2(12): e00210, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27995203

RESUMO

OBJECTIVES: Microfluidic perfusion systems are used for assessing cell and tissue function while assuring cellular viability. Low perfusate flow rates, desired both for conserving reagents and for extending the number of channels and duration of experiments, conventionally depend on peristaltic pumps to maintain flow yet such pumps are unwieldy and scale poorly for high-throughput applications requiring 16 or more channels. The goal of the study was to develop a scalable multichannel microfluidics system capable of maintaining and assessing kinetic responses of small amounts of tissue to drugs or changes in test conditions. METHODS: Here we describe the BaroFuse, a novel, multichannel microfluidics device fabricated using 3D-printing technology that uses gas pressure to drive large numbers of parallel perfusion experiments. The system is versatile with respect to endpoints due to the translucence of the walls of the perifusion chambers, enabling optical methods for interrogating the tissue status. The system was validated by the incorporation of an oxygen detection system that enabled continuous measurement of oxygen consumption rate (OCR). RESULTS: Stable and low flow rates (1-20 µL/min/channel) were finely controlled by a single pressure regulator (0.5-2 psi). Control of flow in 0.2 µL/min increments was achieved. Low flow rates allowed for changes in OCR in response to glucose to be well resolved with very small numbers of islets (1-10 islets/channel). Effects of acetaminophen on OCR by precision-cut liver slices of were dose dependent and similar to previously published values that used more tissue and peristaltic-pump driven flow. CONCLUSIONS: The very low flow rates and simplicity of design and operation of the BaroFuse device allow for the efficient generation of large number of kinetic profiles in OCR and other endpoints lasting from hours to days. The use of flow enhances the ability to make measurements on primary tissue where some elements of native three-dimensional structure are preserved. We offer the BaroFuse as a powerful tool for physiological studies and for pharmaceutical assessment of drug effects as well as personalized medicine.

13.
Sci Rep ; 6: 39319, 2016 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-27982116

RESUMO

Functional characterization of individual cells within heterogeneous tissue preparations is challenging. Here, we report the development of a versatile imaging method that assesses single cell responses of various endpoints in real time, while identifying the individual cell types. Endpoints that can be measured include (but are not limited to) ionic flux (calcium, sodium, potassium and hydrogen), metabolic responsiveness (NAD(P)H, mitochondrial membrane potential), and signal transduction (H2O2 and cAMP). Subsequent to fluorescent imaging, identification of cell types using immunohistochemistry allows for mapping of cell type to their respective functional real time responses. To validate the utility of this method, NAD(P)H responses to glucose of islet alpha versus beta cells generated from dispersed pancreatic islets, followed by the construction of frequency distributions characterizing the variability in the magnitude of each individual cell responses were compared. As expected, no overlap between the glucose response frequency distributions for beta cells versus alpha cells was observed, thereby establishing both the high degree of fidelity and low rate of both false-negatives and false-positives in this approach. This novel method has the ability not only to resolve single cell level functional differences between cell types, but also to characterize functional heterogeneity within a given cell type.


Assuntos
Ensaios de Triagem em Larga Escala/métodos , Imagem Óptica/métodos , Análise de Célula Única/métodos , Animais , Células Secretoras de Glucagon/metabolismo , Glucose/metabolismo , Imuno-Histoquímica , Células Secretoras de Insulina/metabolismo , Masculino , Microscopia de Fluorescência , NADP/análise , Ratos Sprague-Dawley
14.
Toxicol Sci ; 148(2): 594-602, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26396153

RESUMO

There is a general need to detect toxic effects of drugs during preclinical screening. We propose that increased sensitivity of xenobiotics toxicity combined with improved in vitro physiological recapitulation will more accurately assess potentially toxic perturbations of cellular biochemistry that are near in vivo pharmacological exposure levels. Importantly, measurement of such cytopathologies avoids activating mechanisms mediating toxicity at suprapharmacologic levels not relevant to in vivo effects. We present a sensitive method to measure changes in oxygen consumption rate (OCR), a well-established parameter reflecting a potential hazard, in response to exposure to pharmacologic levels of drugs using a flow culture system and state of the art oxygen sensing system. We tested metformin and acetaminophen on rat liver slices to illustrate the method. The features of the method include continuous and very stable measurement of OCR over the course of 48 h in liver slices in a continuous flow chamber with the ability to resolve changes as small as 0.3%/h. Kinetic modeling of metformin inhibition of OCR over a wide range of concentrations revealed both a slow and fast mechanism, where the fast mechanism activated only at concentrations above 0.6 mM. For both drugs, small amounts of inhibition were reversible, but higher decrements were irreversible. Overall the study highlights the advantages of measuring low-level toxicity so as to avoid the common extrapolations made about drug toxicity based on effects of drugs tested at suprapharmacologic levels.


Assuntos
Acetaminofen/toxicidade , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Fígado/efeitos dos fármacos , Metformina/toxicidade , Modelos Biológicos , Consumo de Oxigênio/efeitos dos fármacos , Testes de Toxicidade/métodos , Animais , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Relação Dose-Resposta a Droga , Técnicas In Vitro , Cinética , Fígado/metabolismo , Ratos Sprague-Dawley , Recuperação de Função Fisiológica , Medição de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA