Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Environ Manage ; 298: 113489, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34426216

RESUMO

Greywater treatment and reuse for non-potable purposes in urban areas has become a widely researched topic to reduce the burden on fresh water resources. This study reports on the use of a green wall for treating grey water and reusing the effluent for toilet flushing, called Total Value Wall (TVW). Initially, the effectiveness of (mixtures of) different substrates, i.e. lava, lightweight expanded clay aggregates, organic soil and biochar was investigated by means of column tests. All substrates were first examined for hydraulic characteristics and later on the columns were fed with synthetic grey wastewater and followed up in terms of removal efficiency of COD and detergents. The mixture consisting of lava (50%), organic soil (25%) and biochar (25%) proved to be optimal both in terms of percolation rates and removal efficiencies, and was thus selected for the full-scale system. The full-scale TVW of 14.4 m2 was installed at a terraced house in Ghent (Belgium), and was loaded with grey water at 100 L per day. Influent and effluent quality were routinely monitored by grab sampling, water savings were monitored by means of flow meters, and electricity consumption was also accounted for. The TVW was further equipped with sensors that measure temperature, Particulate Matter (PM10) and CO2 in the air. The full-scale system obtained effluent concentrations of 13 mg.L-1 TSS, 91 mg.L-1 COD and 5 mg.L-1 BOD5. Ammonium and total coliforms were removed with removal rates of 97% and 99% (2 log units) respectively. However, an increase in effluent concentration of nitrate and phosphate was observed due to leaching from the selected substrate. Available data from the temperature sensors have clearly demonstrated the additional benefit of the TVW as an insulating layer, keeping the heat outside on warmer days, and keeping the heat inside on colder days. Overall, this study demonstrated that the TVW is a sustainable system for greywater treatment and reuse.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Reciclagem , Eliminação de Resíduos Líquidos , Águas Residuárias , Água
2.
Environ Geochem Health ; 42(2): 563-577, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31432347

RESUMO

This study aimed to determine the levels of metals and metalloid (arsenic) in pit lakes from a gold mining site and in their fishes and assess their potential health effect on the local human population, in order to evaluate whether pit lakes can be safely used for aquaculture. Water quality data were collected from two pit lakes, namely West Pit 1 (WP1) and West Pit 2 (WP2), and the Nakambé River (NR) in Burkina Faso. Fish consumption rates in different villages were assessed through a survey. Commonly available fish were sampled from the pit lakes and the NR. Fish from the pit lakes contained higher amounts of metals and metalloid than fish from the river (WP1 ~ WP2 < NR). Of the four species of fish considered, Oreochromis niloticus and Hydrocynus forskahlii had the highest metals and metalloid content and Bagrus bajad and Clarias anguillaris had the lowest. The results indicated that the consumption of the whole fish results in higher metals and metalloid intake than consumption of the fleshy part only. Due to the low fish intake of 5.34 ± 2.60 g/day/adult deduced from the nutritional survey, exposure to metals and metalloid was below referential doses. The highest arsenic intake comes from eating entire O. niloticus (0.058 mg/day/adult) from WP1. Eating O. niloticus and C. anguillaris exposes people to an arsenic intake of 0.01 mg/day/adult. The arsenic contents of H. forskahlii and B. bajad were below the method detection limit.


Assuntos
Exposição Dietética/análise , Peixes , Contaminação de Alimentos/análise , Lagos/análise , Metaloides/análise , Metais/análise , Animais , Burkina Faso , Exposição Dietética/efeitos adversos , Ingestão de Alimentos , Monitoramento Ambiental/métodos , Feminino , Produtos Pesqueiros/análise , Ouro , Humanos , Lagos/química , Masculino , Mineração , Medição de Risco , Rios , Poluentes Químicos da Água/análise , Qualidade da Água
3.
Int J Phytoremediation ; 21(10): 998-1004, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31016986

RESUMO

Treatment of landfill leachate is a challenge due to its complex chemical composition and high recalcitrance and because of high costs for conventional wastewater treatment. In our study, leachate from the Quitaúna Landfill, Sao Paulo Metropolitan Region, Brazil, was treated at a laboratory scale with a horizontal subsurface flow constructed treatment wetland (HF-CTW) operating under a recirculation regime. Two units planted with Heliconia psittacorum (HP) and Cyperus papyrus (CP), and one unplanted control unit were assessed. With a recirculation regime over 21 days, the planted units removed 40% of chemical oxygen demand (COD) while the control unit removed only 29%. True color removal efficiencies were 2, 22, and 23% for the control, HP, and CP HF-CTWs, respectively. The ammonium nitrogen removal efficiencies for a 21-day hydraulic retention time (HRT) were 63-81% for planted units and 72% for the control. The increase of the HRT from 7 to 21 days led to the enhancement of ammonium nitrogen removal but did not affect the COD and total nitrogen removals. This phenomenon is a consequence of leachate's low biodegradability. The present study shows the importance of the HRT and plant presence for landfill leachate treatment using HF-CTWs.


Assuntos
Poluentes Químicos da Água/análise , Áreas Alagadas , Biodegradação Ambiental , Análise da Demanda Biológica de Oxigênio , Brasil , Nitrogênio/análise
4.
J Environ Manage ; 248: 109292, 2019 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-31351406

RESUMO

Cereals grown close to mining sites could contain high levels of trace elements which could jeopardize local population health through intake of those crops. This study investigated for the first time the concentration of trace elements, namely arsenic, cadmium, cobalt, chromium, copper, iron, manganese, nickel, lead and zinc in four types of cereals (two of maize and two of sorghum) grown within the perimeter of a gold mine and at three surrounding villages in Burkina Faso. A total of 47 samples were taken. Cereal consumption surveys in those villages were undertaken to evaluate the intake hazard. Average arsenic content trend was Site (0.31 ±â€¯0.56 mg kgdw-1) > Songo (0.18 ±â€¯0.17 mg kgdw-1) > Sighnoguin (0.15 ±â€¯0.10 mg kgdw-1) > Youga (0.10 ±â€¯0.00 mg kgdw-1); subsequently, the average estimated daily intake of Arsenic followed this pattern: Site > Songo > Sighnoguin > Youga with 1.93, 1.08, 0.89 and 0.63 µg kgbw-1 day-1 respectively which all fall below a target hazard quotient of 1. Non-parametric Kruskal-Wallis tests confirmed significant difference of Co, Cu, Fe, Mn and Ni between locations whilst not significant differences were found for As, Cd, Pb and Zn. Considering cereals types, yellow corn from the mine site exhibited As value higher than the Referential dose (2.14 µg kgbw-1 day-1) and consequently a target hazard quotient of 1.97. This finding indicates that there is an intake risk to the local population from dietary intake. Contamination by As could be linked to mining activities on parent rocks that contain As with spread by wind to Songo and Youga. Sighnoguin village is more subject to contamination by agricultural practices. Decontamination of the site and selection of cereals with low uptake capability and some changes to agricultural practices could reduce the hazards.


Assuntos
Metais Pesados , Poluentes do Solo , Oligoelementos , Burkina Faso , Grão Comestível , Monitoramento Ambiental , Ouro , Mineração , Medição de Risco
5.
J Environ Manage ; 210: 349-358, 2018 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-29367143

RESUMO

Objective of the current work was to monitor the year-round response of full-scale hybrid constructed-wetlands (CWs) treating domestic wastewater under variable continuous flow. Two systems were evaluated: system-I consisted of an anaerobic baffled reactor (ABR) followed by a saturated vertical subsurface-flow (VSSF) CW and a free-water-surface (FWS) CW as a tertiary treatment; system-II consisted of an ABR followed by a horizontal subsurface-flow (HSSF) CW and FWS. Maximum reduction of 80 and 78%, 81 and 82%, 63 and 69%, 79 and 89% for chemical oxygen demand (COD), biological oxygen demand (BOD), total kjeldahl nitrogen (TKN) and total suspended solids (TSS) was achieved in Systems I and II respectively. There was also effective removal (94% and 93%) of the bacterial population in both systems while more than 94% of pathogenic microorganisms were removed. Data from both systems were further used to compute the first-order rate constants for the k-C* model commonly used in CW design. The treatment performance was confirmed to follow a first-order reaction rate, in which the k20 values of chemical oxygen demand (COD), biological oxygen demand (BOD), total kjeldahl nitrogen (TKN), total phosphorus (TP) and total suspended solids were calculated as 165, 117, 133, 7.5 and 78 m yr-1 respectively for VSSF and 226, 134, 199, 22 and 73 m yr-1 respectively for HSSF. A positive correlation with temperature was discovered for all parameters in both systems.


Assuntos
Análise da Demanda Biológica de Oxigênio , Águas Residuárias , Áreas Alagadas , Paquistão , Eliminação de Resíduos Líquidos , Purificação da Água
6.
Water Sci Technol ; 76(5-6): 1457-1465, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28953472

RESUMO

Pharmaceutical residues in wastewater pose a challenge to wastewater treatment technologies. Constructed wetlands (CWs) are common wastewater treatment systems in rural areas and they discharge often in small water courses in which the ecology can be adversely affected by the discharged pharmaceuticals. Hence, there is a need for studies aiming to improve the removal of pharmaceuticals in CWs. In this study, the performance of a full-scale aerated sub-surface flow hybrid CW treating wastewater from a healthcare facility was studied in terms of common water parameters and pharmaceutical removal. In addition, a preliminary aquatic risk assessment based on hazard quotients was performed to estimate the likelihood of adverse effects on aquatic organisms in the forest creek where this CW discharges. The (combined) effect of aeration and hydraulic retention time (HRT) was evaluated in a laboratory-scale batch experiment. Excellent removal of the targeted pharmaceuticals was obtained in the full-scale CW (>90%) and, as a result, the aquatic risk was estimated low. The removal efficiency of only a few of the targeted pharmaceuticals was found to be dependent on the applied aeration (namely gabapentin, metformin and sotalol). Longer and the HRT increased the removal of carbamazepine, diclofenac and tramadol.


Assuntos
Carbamazepina/química , Diclofenaco/química , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/química , Poluentes Químicos da Água/química , Áreas Alagadas , Ar , Anti-Inflamatórios não Esteroides/química , Anticonvulsivantes/química , Fatores de Tempo
7.
J Environ Manage ; 134: 100-8, 2014 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-24468449

RESUMO

In this study, a mathematical biofilm reactor model based on the structure of the Constructed Wetland Model No.1 (CWM1) coupled to AQUASIM's biofilm reactor compartment has been used to reproduce the sequence of transformation and degradation of organic matter, nitrogen and sulphur observed in a set of constructed wetland mesocosms and to elucidate the development over time of microbial species as well as the biofilm thickness of a multispecies bacterial biofilm in a subsurface constructed wetland. Experimental data from 16 wetland mesocosms operated under greenhouse conditions, planted with three different plant species (Typha latifolia, Carex rostrata, Schoenoplectus acutus) and an unplanted control were used in the calibration of this mechanistic model. Within the mesocosms, a thin (predominantly anaerobic) biofilm was simulated with an initial thickness of 49 µm (average) and in which no concentration gradients developed. The biofilm density and area, and the distribution of the microbial species within the biofilm were evaluated to be the most sensitive biofilm properties; while the substrate diffusion limitations were not significantly sensitive to influence the bulk volume concentrations. The simulated biofilm density ranging between 105,000 and 153,000 gCOD/m(3) in the mesocosms was observed to vary with temperature, the presence as well as the species of macrophyte. The biofilm modeling was found to be a better tool than the suspended bacterial modeling approach to show the influence of the rhizosphere configuration on the performance of the constructed wetlands.


Assuntos
Fenômenos Fisiológicos Bacterianos , Biofilmes , Modelos Teóricos , Áreas Alagadas , Bactérias/crescimento & desenvolvimento , Cyperaceae , Raízes de Plantas/microbiologia , Rizosfera , Typhaceae , Poluentes da Água , Purificação da Água/métodos
8.
Environ Sci Pollut Res Int ; 31(32): 44518-44541, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38955972

RESUMO

This research examines advancements in the development of process-based models of constructed wetlands (CWs) tailored for simulating conventional water quality parameters (CWQPs). Despite the promising potential of CWs for emerging organic contaminant (EOC) removal, the available CW models do not yet integrate EOC removal processes. This study explores the need and possibility of integrating EOCs into existing CW models. Nevertheless, a few researchers have developed process-based models of other wastewater treatment systems (e.g., activated sludge systems) to simulate certain EOCs. The EOC removal processes observed in other wastewater treatment systems are analogous to those in CWs. Therefore, the corresponding equations governing these processes can be tailored and integrated into existing CW models, similarly to what was done successfully in the past for CWQPs. This study proposed the next generation of CW models, which outlines 12 areas for future work: integrating EOC removal processes; ensuring data availability for model calibration and validation; considering quantitative and sensitive parameters; quantifying microorganisms in CWs; modifying biofilm dynamics models; including pH, aeration, and redox potential; integrating clogging and plant sub-models; modifying hydraulic sub-model; advancing computer technology and programming; and maintaining a balance between simplicity and complexity. These suggestions provide valuable insights for enhancing the design and operational features of current process-based models of CWs, facilitating improved simulation of CWQPs, and integration of EOCs into the modelling framework.


Assuntos
Eliminação de Resíduos Líquidos , Áreas Alagadas , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias , Poluentes Químicos da Água , Modelos Teóricos , Qualidade da Água
9.
Bioresour Technol ; 411: 131331, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39181512

RESUMO

Microalgal-bacterial granular sludge (MBGS) could offer a sustainable alternative to traditional aerobic methods in brewery wastewater (BWW) treatment. This study compared MBGS with conventional activated sludge (AS) in treating real BWW and highlighted its advantages and challenges. MBGS achieved comparable chemical oxygen demand removal efficiency (93%) compared to AS (89%). Additionally, MBGS exhibited higher phosphate removal capabilities than AS. Extra nitrogen was added to influent to balance C/N ratio of BWW. MBGS was robust in handling C/N ratio fluctuations with an 82% total nitrogen removal efficiency. Metagenomic analysis further indicated that most of the genes involved in carbon, nitrogen and phosphorus metabolism were up-regulated in MBGS compared to AS. Despite changes in the microbial community and settling ability due to high starch and sugar content in BWW, MBGS demonstrated high efficiency and sustainability. Further research should optimize MBGS operation strategies to fully realize its potential for sustainable BWW treatment.


Assuntos
Bactérias , Microalgas , Nitrogênio , Esgotos , Águas Residuárias , Microalgas/metabolismo , Esgotos/microbiologia , Águas Residuárias/química , Bactérias/metabolismo , Análise da Demanda Biológica de Oxigênio , Purificação da Água/métodos , Fósforo , Carbono/farmacologia , Eliminação de Resíduos Líquidos/métodos , Cerveja , Fosfatos , Reatores Biológicos
10.
Chemosphere ; 364: 143262, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39236913

RESUMO

This study explored Mason pine-derived hydrochar (MPHC) as an effective adsorbent and persulfate (PS) activator for degrading bisphenol A (BPA). Increasing MPHC dosage from 0.25 to 2.0 g L-1 raised BPA removal from 42% to 87%. Similarly, at the same MPHC dosage range and fixed PS concentration (8 mM), BPA removal by MPHC/PS increased from 66% to 91%. Additionally, at a fixed MPHC dosage (1.0 g L-1), higher PS concentrations (2-32 mM) resulted in an overall BPA removal increase from 78% to 99%. The optimal pH for BPA removal by MPHC was at pH 3, while for MPHC/PS was at pH 9. BPA degradation by MPHC was optimal at pH 3, whereas MPHC/PS was at pH 3 and pH 9. Additionally, pH 7 favored BPA adsorption for both MPHC and MPHC/PS. The study also considered the influence of coexisting anions and humic acid (HA). PO43- and NO3- influence adsorption on MPHC, but these anions' effect on MPHC/PS is limited. Furthermore, the existence of HA had minimal influence on BPA removal by MPHC/PS. The contributions of different reactive species by MPHC for BPA degradation are as follows: electron-hole (h+) 2%, singlet oxygen (1O2) 7%, superoxide radicals (O2•-) 13%, electron (e-) 2%, hydroxyl radical (•OH) 3%, whereas the remaining 48% removal was the contribution of adsorption. For MPHC/PS, adsorption accounted for 39 %, more reactive species were involved in degradation, and the donations are (h+) 3%, sulfate radicals (SO4•-) 3%, (1O2) 19%, (O2•-) 15%, (e-) 2%, and (•OH) 2%. Additionally, the performance of MPHC remains stable after three operational cycles. The preparation cost of MPHC is 3.01 € kg-1. These results highlight the potential of MPHC as an environmentally friendly material for activating PS and removing organic pollutants, suggesting its promising application in future environmental remediation efforts.

11.
J Environ Manage ; 128: 220-5, 2013 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-23747372

RESUMO

The performance, effluent quality, land area requirement, investment and operation costs of a full-scale waste stabilization pond (WSP) and a pilot scale horizontal subsurface flow constructed wetland (HSSF-CW) at Jomo Kenyatta University of Agriculture and Technology (JKUAT) were investigated between November 2010 to January 2011. Both systems gave comparable medium to high levels of organic matter and suspended solids removal. However, the WSP showed a better removal for Total Phosphorus (TP) and Ammonium (NH4(+)-N). Based on the population equivalent calculations, the land area requirement per person equivalent of the WSP system was 3 times the area that would be required for the HSSF-CW to treat the same amount of wastewater. The total annual cost estimates consisting of capital, operation and maintenance (O&M) costs were comparable for both systems. However, the evaluation of the capital cost of either system showed that it is largely influenced by the size of the population served, local cost of land and the construction materials involved. Hence, one can select either system in terms of treatment efficiency. When land is available other factor including the volume of wastewater or the investment, and O&M costs determine the technology selection.


Assuntos
Eliminação de Resíduos Líquidos/economia , Eliminação de Resíduos Líquidos/métodos , Áreas Alagadas , Compostos de Amônio/isolamento & purificação , Custos e Análise de Custo , Humanos , Quênia , Fósforo/isolamento & purificação , Lagoas , Densidade Demográfica , Águas Residuárias , Poluentes Químicos da Água/isolamento & purificação , Qualidade da Água
12.
Environ Sci Ecotechnol ; 16: 100265, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37101565

RESUMO

Seasonal or permanent water scarcity in off-grid communities can be alleviated by recycling water in decentralized wastewater treatment systems. Nature-based solutions, such as constructed wetlands (CWs), have become popular solutions for sanitation in remote locations. Although typical CWs can efficiently remove solids and organics to meet water reuse standards, polishing remains necessary for other parameters, such as pathogens, nutrients, and recalcitrant pollutants. Different CW designs and CWs coupled with electrochemical technologies have been proposed to improve treatment efficiency. Electrochemical systems (ECs) have been either implemented within the CW bed (ECin-CW) or as a stage in a sequential treatment (CW + EC). A large body of literature has focused on ECin-CW, and multiple scaled-up systems have recently been successfully implemented, primarily to remove recalcitrant organics. Conversely, only a few reports have explored the opportunity to polish CW effluents in a downstream electrochemical module for the electro-oxidation of micropollutants or electro-disinfection of pathogens to meet more stringent water reuse standards. This paper aims to critically review the opportunities, challenges, and future research directions of the different couplings of CW with EC as a decentralized technology for water treatment and recovery.

13.
Chemosphere ; 334: 138999, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37217009

RESUMO

Biochar has gained global recognition as an effective tool for environmental remediation, and is increasingly being used as an alternative substrate in constructed wetlands (CWs). While, most studies have focused on the positive effects of biochar for the pollutant removal in CWs, less is known about aging and longevity of the embedded biochar. This study investigated the aging and stability of biochar embedded in CWs post-treating the effluent of a municipal and an industrial wastewater treatment plant. Litter bags containing biochar were inserted into two aerated horizontal subsurface flow CWs (350 m2 each), and retrieved on several dates (8-775 days after burial) for assessment of weight loss/gain and changes in biochar characteristics. Additionally, a 525-day laboratory incubation test was conducted to analyze biochar mineralization. The results showed that there was no significant biochar weight loss over time, but a slight increase in weight (2.3-3.0%) was observed at the end, likely due to mineral sorption. Biochar pH remained stable except for a sudden drop at the beginning (8.6-8.1), while the electrical conductivity continued to increase (96-256 µS cm-1) throughout the experiment. The sorption capacity of the aged biochar for methylene blue significantly increased (1.0-1.7 mg g-1), and a change in the biochar's elemental composition was also noted, with O-content increasing by 13-61% and C content decreasing by 4-7%. Despite these changes, the biochar remained stable according to the criteria of the European Biochar Foundation and International Biochar Initiative. The incubation test also showed negligible biochar mass loss (<0.02%), further validating the stability of the biochar. This study provides important insights into the evolution of biochar characteristics in CWs.


Assuntos
Recuperação e Remediação Ambiental , Áreas Alagadas , Carvão Vegetal
14.
Water Res ; 240: 120106, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37244019

RESUMO

Treatment wetlands (TWs) are an efficient technology for removing microplastics (MPs) from wastewater, according to previous studies. This study investigates the dynamics and fate of MPs in two wastewater treatment plants (WWTPs) using TWs, one with horizontal subsurface flow (HF) and another with a floating plant system (FS). Special attention is paid to the retention produced in the sludge and the role of macrophyte roots. The abundance of MPs in the influent to the WWTPs was on average 20.3 ± 0.85 MP/L and 8.4 ± 1.13 MP/L in HF and FS respectively, while the effluent had 0.58 ± 0.07 MP/L and 0.17 ± 0.06 MP/L, thus giving overall efficiencies of 97.42% and 98.13%, respectively. In the HF wetland, sludge samples near the inlet and the outlet were taken, distinguishing between sludge adhered to gravel and sludge attached to roots. In the floating macrophytes, sludge samples from secondary and tertiary treatments were taken. The results indicate that roots play a significant role in MPs retention. In the HF wetland, the complex formed by roots and gravel attached more MPs than gravel alone in the final zone of the wetland. In the FS, roots retained a significant quantity of MPs, both in the secondary and tertiary treatments, thus giving rise to a sludge less concentrated in MPs. This study aims to improve the knowledge of MPs behavior and fate in full-scale TWs, providing valuable information to enhance retention efficiency.


Assuntos
Microplásticos , Poluentes Químicos da Água , Esgotos , Eliminação de Resíduos Líquidos/métodos , Plásticos , Áreas Alagadas , Poluentes Químicos da Água/análise
15.
Environ Monit Assess ; 184(4): 1823-39, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21541777

RESUMO

The heavy metal contamination in Lake Ohrid, a lake shared between Albania and Macedonia, was studied. Lake Ohrid is believed to be one of the oldest lakes in the world, with a large variety of endemic species. Different anthropogenic pressures, especially heavy metal influxes from mining activities, might have influenced the fragile equilibrium of the lake ecosystem. Heavy metal concentrations in water, sediment, emergent vegetation, and fish were investigated at selected sites of the lake and a study of the heavy metals in five tributaries was conducted. The lake surface water was found to have low levels of heavy metals, but sediments contained very high levels mostly near river mouths and mineral dump areas with concentrations reaching 1,501 mg/kg for Ni, 576 mg/kg for Cr, 116.8 mg/kg for Co and 64.8 g/kg for Fe. Sequential extraction of metals demonstrates that heavy metals in the sediment are mainly present in the residual fraction varying from 75% to 95% in different sites. High heavy metal levels (400 mg/kg Ni, 89 mg/kg Cr, and 39 mg/kg Co) were found in plants (stem of Phragmites australis), but heavy metals could not be detected in fish tissue (gill, muscle, and liver of Salmo letnica and Salmothymus ohridanus).


Assuntos
Monitoramento Ambiental/métodos , Lagos , Metais Pesados/análise , Albânia , Sedimentos Geológicos/química , Poluentes Químicos da Água/análise
16.
Sci Total Environ ; 847: 157615, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-35901897

RESUMO

The aim of this study was to assess the potential environmental impacts associated with microalgae systems for wastewater treatment and bioproducts recovery. In this sense, a Life Cycle Assessment was carried out evaluating two systems treating i) urban wastewater and ii) industrial wastewater (from a food industry), with the recovery of bioproducts (i.e. natural pigments and biofertilizer) and bioenergy (i.e. biogas). Additionally, both alternatives were compared to iii) a conventional system using a standard growth medium for microalgae cultivation in order to show the potential benefits of using wastewater compared to typical cultivation approaches. The results indicated that the system treating industrial wastewater with unialgal culture had lower environmental impacts than the system treating urban wastewater with mixed cultures. Bioproducts recovery from microalgae wastewater treatment systems can reduce the environmental impacts up to 5 times compared to a conventional system using a standard growth medium. This was mainly due to the lower chemicals consumption for microalgae cultivation. Food-industry effluent showed to be the most promising scenario for bioproducts recovery from microalgae treating wastewater, because of its better quality compared to urban wastewater which also allows the cultivation of a single microalgae species. In conclusion, microalgae wastewater treatment systems are a promising solution not only for wastewater treatment but also to boost the circular bioeconomy in the water sector through microalgae-based product recovery.


Assuntos
Microalgas , Purificação da Água , Animais , Biocombustíveis , Biomassa , Estágios do Ciclo de Vida , Águas Residuárias , Água , Purificação da Água/métodos
17.
Sci Total Environ ; 821: 153470, 2022 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-35093344

RESUMO

Nature-based greywater (GW) treatment and reuse in urban areas has become an up-and-coming option. A 14.4 m2 green wall system called Total Value Wall (TVW) was installed at a terraced house in Gent (Belgium) for treating GW and reusing the effluent for toilet flushing. In a previous study, the TVW was loaded at 7 L.m-2.d-1 and efficiently removed TSS (67%), COD (43%), BOD5 (83%) and total coliforms (log 2), but a number of issues were reported related to nutrient leaching from the substrate, and the excessive retention time in the storage tanks. In this study results are reported from a follow-up study during which an adapted TVW was subjected to both higher hydraulic and pollutant loading rates in order to investigate the treatment capability of TVW. The design of the system, i.e. substrate contained in geotextile bags, did not sustain the higher hydraulic loading rates as excessive leakage occurred. Despite this, the higher pollutant loading rates still resulted in an acceptable effluent quality with 15 mg.L-1 TSS (90%), 85 mg.L-1 COD (82%), and 15 mg.L-1 BOD5 (95%). Ammonium, E. coli and total coliforms were removed with removal rates of 98%, 63% (0.4 log units), and 36% (0.2 log units), respectively. Finally, a life cycle assessment (LCA) was performed for the TVW with and without treating GW to analyze the environmental burden. The LCA impacts showed that replacing tap water and chemical fertilizer by GW, and the reuse of effluent, have a positive impact. However, the energy use for pumping has a major impact and should be minimized by using an efficient pump and distribution system to reduce the overall footprint.


Assuntos
Eliminação de Resíduos Líquidos , Purificação da Água , Animais , Escherichia coli , Seguimentos , Estágios do Ciclo de Vida , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias , Purificação da Água/métodos
18.
Bioresour Technol ; 342: 125993, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34592617

RESUMO

Mathematical models for microalgae and cyanobacteria are seldomly validated for different algal species, as such limiting their applicability. Therefore, in this research, a previously developed kinetic model describing the growth of the green microalgae species Chlorella vulgaris was used to simulate the growth of the cyanobacterium Arthrospira platensis and the red alga Porphyridium purpureum. Based on a global sensitivity analysis, the model parameter µmax,A was calibrated using respirometric-titrimetric data. Calibration yielded values of 5.76 ± 0.17 d-1, 2.06 ± 0.16 d-1 and 1.06 ± 0.09 d-1 for Chlorella vulgaris, Arthrospira platensis and Porphyridium purpureum, respectively. Model simulations revealed that the biological growth equations in this model are adequate. However, increased light intensities triggered a survival mechanism for Arthrospira platensis, which is currently not taken into account by the model, leading to bad model accuracy under these circumstances. Future work should address the most important survival mechanisms and include those in the model to widen its applicability.


Assuntos
Chlorella vulgaris , Microalgas , Porphyridium , Spirulina , Biomassa
19.
Sci Total Environ ; 784: 147048, 2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-33894600

RESUMO

With the emerging need of nutrient recycling in resource recovery facilities, the use of microalgae-bacteria flocs has received considerable attention in the past few years. However, although the main biological processes are already known, the complex interactions occurring between algae and bacteria are not fully understood. In this work, a combined respirometric-titrimetric unit was used to assess the microorganisms' kinetics within microalgae-bacteria flocs under different growth regimes (i.e. photoautotrophic, heterotrophic and mixotrophic) and different ratios of inorganic (IC) to organic carbon (OC) (IC:OC-ratios). Using this respirometric-titrimetric data, a new model was developed, calibrated and successfully validated. The model takes into account the heterotrophic growth of bacteria, the photoautotrophic, heterotrophic and mixotrophic growth of algae and the production and consumption of extracellular polymeric substances (EPS) by both bacteria and algae. As such, the model can be used for detailed analysis of the carbon fluxes within microalgae-bacteria flocs in an efficient way. Model analysis revealed the high importance of the EPS regulatory mechanism. Firstly, under heterotrophic growth conditions, OC-uptake occurred during the first 10-15 min. This was linked with internal OC storage (49% of added OC) and EPS production (40%), as such providing carbon reserves which can be consumed during famine conditions. Moreover, the algae were able to compete with bacteria for OC. Secondly, under photoautotrophic conditions, algae used the added IC to grow (57% of added IC) and to produce EPS (29%), which consecutively stimulated heterotrophic bacteria growth (20%). Finally, under mixotrophic conditions, low IC:OC-ratios resulted in an extensive OC-storage and EPS production (50% of added C) and an enhanced microalgal CO2 reuse, resulting in an increased algal growth of up to 29%.


Assuntos
Microalgas , Bactérias , Biomassa , Carbono , Ciclo do Carbono , Processos Heterotróficos
20.
Chemosphere ; 271: 129593, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33460890

RESUMO

The removal of organic micropollutants (OMPs) has been investigated in constructed wetlands (CWs) operated as bioelectrochemical systems (BES). The operation of CWs as BES (CW-BES), either in the form of microbial fuel cells (MFC) or microbial electrolysis cells (MEC), has only been investigated in recent years. The presented experiment used CW meso-scale systems applying a realistic horizontal flow regime and continuous feeding of real urban wastewater spiked with four OMPs (pharmaceuticals), namely carbamazepine (CBZ), diclofenac (DCF), ibuprofen (IBU) and naproxen (NPX). The study evaluated the removal efficiency of conventional CW systems (CW-control) as well as CW systems operated as closed-circuit MFCs (CW-MFCs) and MECs (CW-MECs). Although a few positive trends were identified for the CW-BES compared to the CW-control (higher average CBZ, DCF and NPX removal by 10-17% in CW-MEC and 5% in CW-MFC), these proved to be not statistically significantly different. Mesoscale experiments with real wastewater could thus not confirm earlier positive effects of CW-BES found under strictly controlled laboratory conditions with synthetic wastewaters.


Assuntos
Fontes de Energia Bioelétrica , Áreas Alagadas , Diclofenaco , Eletrólise , Eliminação de Resíduos Líquidos , Águas Residuárias/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA