Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 21(16): 6807-6812, 2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34343007

RESUMO

We discover that large uniaxial magnetocrystalline anisotropy driven by the simultaneous presence of spin-orbit coupling and structural distortions is the origin of the giant coercivity observed experimentally in the double perovskite Lu2NiIrO6. The magnetic easy axis turns out to be the monoclinic b-axis with an anisotropy constant as high as 1.9 × 108 erg/cm3. The predicted coercive field of 50 kOe and Curie temperature of 220 K agree with the experimentally observed values and point to potential of Lu2NiIrO6 in spintronics applications. We find that the spin-orbit coupling induces a rare Ir4+ Jeff = 1/2 Mott insulating state, suggesting that Lu2NiIrO6 provides a playground to study the interplay between spin-orbit coupling and electronic correlations in a 5d transition metal oxide. The spin-orbit coupling also results in a direct band gap with the valence and conduction states localized on different transition metal sublattices, i.e., efficient electron-hole separation upon photoexcitation and low electron-hole recombination.

2.
Phys Rev Lett ; 123(10): 107201, 2019 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-31573301

RESUMO

Epitaxial strain has been shown to drive structural phase transitions along with novel functionalities in perovskite-based thin films. Aliovalent doping at the A site can drive an insulator-to-metal and magnetic transitions in perovskites along with a variety of interesting structural and electronic phenomena. Using first-principles calculations, we predict the formation of a multiferroic half-metallic phase with a large magnetic moment in the double perovskite, Bi_{2}FeCrO_{6}, by coupling epitaxial strain with A-site hole doping. We also demonstrate that epitaxial strain can be used to manipulate the hole states created by doping to induce half-metal to insulator, antipolar to polar, antiferromagnetic to ferromagnetic, orbital ordering and charge ordering transitions. Our work also suggests that hole doping under strain could lead to mitigation of issues related to antisite defects and lowered magnetization in thin films of the material.

3.
Nanoscale Adv ; 5(6): 1714-1721, 2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36926555

RESUMO

The electronic and magnetic properties of (LaCrO3) m /SrCrO3 superlattices are investigated using first principles calculations. We show that the magnetic moments in the two CrO2 layers sandwiching the SrO layer compensate each other for even m but give rise to a finite magnetization for odd m, which is explained by charge ordering with Cr3+ and Cr4+ ions arranged in a checkerboard pattern. The Cr4+ ions induce in-gap hole states at the interface, implying that the transparent superlattices are p-type semiconductors. The availability of transparent p-type semiconductors with finite magnetization enables the fabrication of transparent magnetic diodes and transistors, for example, with a multitude of potential technological applications.

4.
Adv Mater ; 35(22): e2211738, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36942383

RESUMO

Gate controllability is a key factor that determines the performance of GaN high electron mobility transistors (HEMTs). However, at the traditional metal-GaN interface, direct chemical interaction between metal and GaN can result in fixed charges and traps, which can significantly deteriorate the gate controllability. In this study, Ti3 C2 Tx MXene films are integrated into GaN HEMTs as the gate contact, wherein van der Waals heterojunctions are formed between MXene films and GaN without direct chemical bonding. The GaN HEMTs with enhanced gate controllability exhibit an extremely low off-state current (IOFF ) of 10-7 mA mm-1 , a record high ION /IOFF current ratio of ≈1013 (which is six orders of magnitude higher than conventional Ni/Au contact), a high off-state drain breakdown voltage of 1085 V, and a near-ideal subthreshold swing of 61 mV dec-1 . This work shows the great potential of MXene films as gate electrodes in wide-bandgap semiconductor devices.

5.
Adv Sci (Weinh) ; 9(26): e2106037, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35863902

RESUMO

The influence of epitaxial strain on the electronic, magnetic, and optical properties of the distorted double perovskite Ca2 FeOsO6 is studied. These calculations show that the compound realizes a monoclinic structure with P21 /n space group from -6% to +6% strain. While it retains ferrimagnetic ordering with a net magnetic moment of 2 µB per formula unit at low strain, it undergoes transitions into E-antiferromagnetic and C-antiferromagnetic phases at -5% and +5% strain, respectively. It is shown that spin frustration reduces the critical temperature of the ferrimagnetic ordering from the mean field value of 600-350 K, in excellent agreement with the experimental value of 320 K. It is also shown that the critical temperature can be tuned efficiently through strain and that the spin coherence length surpasses that of Sr2 FeMoO6 under tensile strain. An indirect-to-direct bandgap transition is observed at +5% strain. Localization of the valence and conduction states on different transition metal sublattices enables efficient electron-hole separation upon photoexcitation. The calculated spectroscopic limited maximum efficiency of up to 33% points to excellent potential of Ca2 FeOsO6 in solar cell applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA