Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Hum Reprod ; 38(11): 2105-2118, 2023 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-37674325

RESUMO

STUDY QUESTION: What is the impact of low- or moderate-risk gonadotoxic chemotherapy received prior to testicular tissue freezing (TTF), and of the cancer itself, on spermatogonia quantity in testicular tissue from (pre)pubertal boys? SUMMARY ANSWER: Vincristine, when associated with alkylating agents, has an additional adverse effect on spermatogonia quantity, while carboplatin has no individual contribution to spermatogonia quantity, in testicular tissue of (pre)pubertal boys, when compared to patients who have received non-alkylating chemotherapy. WHAT IS KNOWN ALREADY: The improved survival rates after cancer treatment necessitate the inclusion of fertility preservation procedures as part of the comprehensive care for patients, taking into consideration their age. Sperm cryopreservation is an established procedure in post-pubertal males while the TTF proposed for (pre)pubertal boys remains experimental. Several studies exploring testicular tissue of (pre)pubertal boys after TTF have examined the tubular fertility index (TFI, percentage of seminiferous tubule cross-sections containing spermatogonia) and the number of spermatogonia per seminiferous tubule cross-section (S/T). All studies have demonstrated that TFI and S/T always decrease after the introduction of chemotherapeutic agents, especially those which carry high gonadotoxic risks such as alkylating agents. STUDY DESIGN, SIZE, DURATION: Testicular tissue samples from 79 (pre)pubertal boys diagnosed with cancer (from 6 months to 16 years of age) were cryopreserved between May 2009 and June 2014. Their medical diagnoses and previous chemotherapy exposures were recorded. We examined histological sections of (pre)pubertal testicular tissue to elucidate whether the chemotherapy or the primary diagnosis affects mainly TFI and S/T. PARTICIPANTS/MATERIALS, SETTING, METHODS: (Pre)pubertal boys with cancer diagnosis who had been offered TTF prior to conditioning treatment for hematopoietic stem cell transplantation were included in the study. All the patients had previously received chemotherapy with low- or moderate-risk for future fertility. We have selected patients for whom the information on the chemotherapy received was complete. The quantity of spermatogonia and quality of testicular tissue were assessed by both morphological and immunohistochemical analyses. MAIN RESULTS AND THE ROLE OF CHANCE: A significant reduction in the number of spermatogonia was observed in boys treated with alkylating agents. The mean S/T values in boys exposed to alkylating agents were significantly lower compared to boys exposed to non-alkylating agents (P = 0.018). In contrast, no difference was observed for patients treated with carboplatin as the sole administered alkylating agent compared to the group of patients exposed to non-alkylating agents. We observed an increase of S/T with age in the group of patients who did not receive any alkylating agent and a decrease of S/T with age when patients received alkylating agents included in the cyclophosphamide equivalent dose (CED) formula (r = 0.6166, P = 0.0434; r = -0.3759, P = 0.0036, respectively). The TFI and S/T decreased further in the group of patients who received vincristine in combination with alkylating agents (decrease of 22.4%, P = 0.0049 and P < 0.0001, respectively), but in this group the CED was also increased significantly (P < 0.0001). Multivariate analysis, after CED adjustment, showed the persistence of a decrease in TFI correlated with vincristine administration (P = 0.02). LIMITATIONS, REASONS FOR CAUTION: This is a descriptive study of testicular tissues obtained from (pre)pubertal boys who were at risk of infertility. The study population is quite heterogeneous, with a small number of patients in each sub-group. Our results are based on comparisons between patients receiving alkylating agents compared to patients receiving non-alkylating agents rather than chemotherapy-naive patients. The French national guidelines for fertility preservation in cancer patients recommend TTF before highly gonadotoxic treatment. Therefore, all the patients had received low- or moderate-risk gonadotoxic chemotherapy before TTF. Access to testicular tissue samples from chemotherapy-naive patients with comparable histological types of cancer was not possible. The functionality of spermatogonia and somatic cells could not be tested by transplantation or in vitro maturation due to limited sample sizes. WIDER IMPLICATIONS OF THE FINDINGS: This study summarizes the spermatogonial quantity of (pre)pubertal boys prior to TTF. We confirmed a negative correlation between the cumulative exposure to alkylating agents and spermatogonial quantity. In addition, the synergistic use of vincristine in combination with alkylating agents showed a cumulative deleterious effect on the TFI. For patients for whom fertility preservation is indicated, TTF should be proposed for chemotherapy with a predicted CED above 4000 mg/m2. However, the data obtained from vincristine and carboplatin use should be confirmed in a subsequent study including more patients. STUDY FUNDING/COMPETING INTEREST(S): This study had financial support from a French national research grant PHRC No. 2008/071/HP obtained by the French Institute of Cancer and the French Healthcare Organization. The sponsors played no role in the study. The authors declare no conflicts of interest. TRIAL REGISTRATION NUMBER: N/A.


Assuntos
Preservação da Fertilidade , Neoplasias , Humanos , Masculino , Espermatogônias/metabolismo , Testículo/metabolismo , Congelamento , Vincristina/metabolismo , Carboplatina/metabolismo , Sêmen , Preservação da Fertilidade/métodos , Neoplasias/complicações , Alquilantes/metabolismo
2.
BMC Genomics ; 20(1): 94, 2019 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-30700263

RESUMO

Following the publication of this article [1] the authors noted that the image in Fig. 1 was incorrect.

3.
BMC Genomics ; 20(1): 64, 2019 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-30658568

RESUMO

BACKGROUND: Many small peptides regulate eukaryotic cell biology. In fungi, some of these peptides are produced after KEX2 protease activity on proteins displaying repetitions of identical or nearly identical motifs. Following this endoprotease activity, peptides are released in the extracellular space. This type of protein maturation is involved in the production of the α-type sexual pheromone in Ascomycota. In other cases, this processing allows the production of secreted peptides regulating fungal cell wall structure or acting as mycotoxins. In this work, we report for the first time a genome-wide search of KEX2-processed repeat proteins that we call KEPs. We screened the secreted proteins of 250 fungal species to compare their KEP repertoires with regard to their lifestyle, morphology or lineage. RESULTS: Our analysis points out that nearly all fungi display putative KEPs, suggesting an ancestral origin common to all opisthokonts. As expected, our pipeline identifies mycotoxins but also α-type sexual pheromones in Ascomycota that have not been explored so far, and unravels KEP-derived secreted peptides of unknown functions. Some species display an expansion of this class of proteins. Interestingly, we identified conserved KEPs in pathogenic fungi, suggesting a role in virulence. We also identified KEPs in Basidiomycota with striking similarities to Ascomycota α-type sexual pheromones, suggesting they may also play alternative roles in unknown signalling processes. CONCLUSIONS: We identified putative, new, unexpected secreted peptides that fall into different functional categories: mycotoxins, hormones, sexual pheromones, or effectors that promote colonization during host-microbe interactions. This wide survey will open new avenues in the field of small-secreted peptides in fungi that are critical regulators of their intimate biology and modulators of their interaction with the environment.


Assuntos
Proteínas Fúngicas/genética , Fungos/genética , Genoma Fúngico/genética , Sinais Direcionadores de Proteínas/genética , Sequência de Aminoácidos , Ascomicetos/classificação , Ascomicetos/genética , Ascomicetos/metabolismo , Basidiomycota/classificação , Basidiomycota/genética , Basidiomycota/metabolismo , Proteínas Fúngicas/metabolismo , Fungos/classificação , Fungos/metabolismo , Fator de Acasalamento/genética , Fator de Acasalamento/metabolismo , Filogenia
4.
New Phytol ; 222(3): 1584-1598, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30636349

RESUMO

Glomeromycotina is a lineage of early diverging fungi that establish arbuscular mycorrhizal (AM) symbiosis with land plants. Despite their major ecological role, the genetic basis of their obligate mutualism remains largely unknown, hindering our understanding of their evolution and biology. We compared the genomes of Glomerales (Rhizophagus irregularis, Rhizophagus diaphanus, Rhizophagus cerebriforme) and Diversisporales (Gigaspora rosea) species, together with those of saprotrophic Mucoromycota, to identify gene families and processes associated with these lineages and to understand the molecular underpinning of their symbiotic lifestyle. Genomic features in Glomeromycotina appear to be very similar with a very high content in transposons and protein-coding genes, extensive duplications of protein kinase genes, and loss of genes coding for lignocellulose degradation, thiamin biosynthesis and cytosolic fatty acid synthase. Most symbiosis-related genes in R. irregularis and G. rosea are specific to Glomeromycotina. We also confirmed that the present species have a homokaryotic genome organisation. The high interspecific diversity of Glomeromycotina gene repertoires, affecting all known protein domains, as well as symbiosis-related orphan genes, may explain the known adaptation of Glomeromycotina to a wide range of environmental settings. Our findings contribute to an increasingly detailed portrait of genomic features defining the biology of AM fungi.


Assuntos
Genoma Fúngico , Genômica , Glomeromycota/genética , Sequência Conservada , Elementos de DNA Transponíveis/genética , Genes Fúngicos , Lignina/metabolismo , Família Multigênica , Filogenia , Polissacarídeos/metabolismo , Reprodução , Simbiose/genética , Transcrição Gênica , Regulação para Cima/genética
5.
New Phytol ; 220(4): 1129-1134, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-29949657

RESUMO

Contents Summary 1129 I. Introduction 1129 II. Intraspecific phenotypic variation and the plant host 1130 III. High inter-isolate genetic diversity in model AMF 1130 IV. Genome diversity within the model AM fungus Rhizophagus irregularis 1131 V. Pangenomes and the future of AMF ecological genomics 1131 Acknowledgements 1133 References 1133 SUMMARY: Arbuscular mycorrhizal fungi (AMF) are ubiquitous plant symbionts with an intriguing population biology. Conspecific AMF strains can vary substantially at the genetic and phenotypic levels, leading to direct and quantifiable variation in plant growth. Recent studies have shown that high intraspecific diversity is very common in AMF, and not only found in model species. Studies have also revealed how the phenotype of conspecific isolates varies depending on the plant host, highlighting the functional relevance of intraspecific phenotypic plasticity for the AMF ecology and mycorrhizal symbiosis. Recent work has also demonstrated that conspecific isolates of the model AMF Rhizophagus irregularis harbor large and highly variable pangenomes, highlighting the potential role of intraspecific genome diversity for the ecological adaptation of these symbionts.


Assuntos
Variação Genética , Genoma Fúngico , Micorrizas/genética , Fenótipo , Plantas/microbiologia , Especificidade da Espécie
6.
New Phytol ; 220(4): 1161-1171, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-29355972

RESUMO

Arbuscular mycorrhizal fungi (AMF) are known to improve plant fitness through the establishment of mycorrhizal symbioses. Genetic and phenotypic variations among closely related AMF isolates can significantly affect plant growth, but the genomic changes underlying this variability are unclear. To address this issue, we improved the genome assembly and gene annotation of the model strain Rhizophagus irregularis DAOM197198, and compared its gene content with five isolates of R. irregularis sampled in the same field. All isolates harbor striking genome variations, with large numbers of isolate-specific genes, gene family expansions, and evidence of interisolate genetic exchange. The observed variability affects all gene ontology terms and PFAM protein domains, as well as putative mycorrhiza-induced small secreted effector-like proteins and other symbiosis differentially expressed genes. High variability is also found in active transposable elements. Overall, these findings indicate a substantial divergence in the functioning capacity of isolates harvested from the same field, and thus their genetic potential for adaptation to biotic and abiotic changes. Our data also provide a first glimpse into the genome diversity that resides within natural populations of these symbionts, and open avenues for future analyses of plant-AMF interactions that link AMF genome variation with plant phenotype and fitness.


Assuntos
Variação Genética , Genoma Fúngico , Glomeromycota/genética , Modelos Biológicos , Micorrizas/genética , Simbiose/genética , Adaptação Fisiológica/genética , Elementos de DNA Transponíveis/genética , Proteínas Fúngicas/química , Genes Fúngicos , Glomeromycota/isolamento & purificação , Anotação de Sequência Molecular , Filogenia , Domínios Proteicos , Especificidade da Espécie
7.
Chemistry ; 24(3): 519-542, 2018 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-28771845

RESUMO

This contribution gives a comprehensive review about the progress in preparation methods, properties and applications of the different synthetic talc types: i) crystalline nanotalc synthesized by hydrothermal treatment; ii) amorphous and/or short-range order nanotalc obtained by precipitation, and iii) organic-inorganic hybrid talc-like structures obtained through a sol-gel process or a chemical grafting. Several advantages of nanotalc such as high chemical purity, high surface area, tunable submicronic size, high thermal stability, and hydrophilic character (leading to be the first fluid mineral) are emphasized. Synthetic nanotalc applications are also considered including its use as nanofiller in composite materials, as absorbers of organic compounds, as anticorrosion coatings and as agents for cosmetic applications. Regarding their high industrial application potential, intensive research has been carried out to better understand their behavior and develop processes to produce them. To facilitate further research and development, scientific and technical challenges are discussed in this Review article.

8.
Proc Natl Acad Sci U S A ; 112(43): 13390-5, 2015 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-26438870

RESUMO

Colonization of land by plants was a major transition on Earth, but the developmental and genetic innovations required for this transition remain unknown. Physiological studies and the fossil record strongly suggest that the ability of the first land plants to form symbiotic associations with beneficial fungi was one of these critical innovations. In angiosperms, genes required for the perception and transduction of diffusible fungal signals for root colonization and for nutrient exchange have been characterized. However, the origin of these genes and their potential correlation with land colonization remain elusive. A comprehensive phylogenetic analysis of 259 transcriptomes and 10 green algal and basal land plant genomes, coupled with the characterization of the evolutionary path leading to the appearance of a key regulator, a calcium- and calmodulin-dependent protein kinase, showed that the symbiotic signaling pathway predated the first land plants. In contrast, downstream genes required for root colonization and their specific expression pattern probably appeared subsequent to the colonization of land. We conclude that the most recent common ancestor of extant land plants and green algae was preadapted for symbiotic associations. Subsequent improvement of this precursor stage in early land plants through rounds of gene duplication led to the acquisition of additional pathways and the ability to form a fully functional arbuscular mycorrhizal symbiosis.


Assuntos
Adaptação Biológica/genética , Evolução Biológica , Clorófitas/genética , Embriófitas/genética , Filogenia , Simbiose/genética , Adaptação Biológica/fisiologia , Sequência de Bases , Clorófitas/fisiologia , Closterium/genética , Closterium/crescimento & desenvolvimento , Primers do DNA/genética , Embriófitas/fisiologia , Fungos/fisiologia , Hepatófitas/genética , Hepatófitas/crescimento & desenvolvimento , Funções Verossimilhança , Medicago truncatula/microbiologia , Modelos Genéticos , Dados de Sequência Molecular , Micorrizas/fisiologia , Proteínas de Plantas/genética , Raízes de Plantas/microbiologia , RNA de Plantas/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Sequência de RNA , Spirogyra/genética , Spirogyra/crescimento & desenvolvimento , Simbiose/fisiologia
9.
BMC Genomics ; 18(1): 589, 2017 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-28789611

RESUMO

BACKGROUND: Development of arbuscular mycorrhiza (AM) requires a fundamental reprogramming of root cells for symbiosis. This involves the induction of hundreds of genes in the host. A recently identified GRAS-type transcription factor in Petunia hybrida, ATA/RAM1, is required for the induction of host genes during AM, and for morphogenesis of the fungal endosymbiont. To better understand the role of RAM1 in symbiosis, we set out to identify all genes that depend on activation by RAM1 in mycorrhizal roots. RESULTS: We have carried out a transcript profiling experiment by RNAseq of mycorrhizal plants vs. non-mycorrhizal controls in wild type and ram1 mutants. The results show that the expression of early genes required for AM, such as the strigolactone biosynthetic genes and the common symbiosis signalling genes, is independent of RAM1. In contrast, genes that are involved at later stages of symbiosis, for example for nutrient exchange in cortex cells, require RAM1 for induction. RAM1 itself is highly induced in mycorrhizal roots together with many other transcription factors, in particular GRAS proteins. CONCLUSION: Since RAM1 has previously been shown to be directly activated by the common symbiosis signalling pathway through CYCLOPS, we conclude that it acts as an early transcriptional switch that induces many AM-related genes, among them genes that are essential for the development of arbuscules, such as STR, STR2, RAM2, and PT4, besides hundreds of additional RAM1-dependent genes the role of which in symbiosis remains to be explored. Taken together, these results indicate that the defect in the morphogenesis of the fungal arbuscules in ram1 mutants may be an indirect consequence of functional defects in the host, which interfere with nutrient exchange and possibly other functions on which the fungus depends.


Assuntos
Micorrizas/genética , Micorrizas/metabolismo , Petunia/genética , Petunia/metabolismo , Proteínas de Plantas/metabolismo , Fatores de Transcrição/metabolismo , Transcrição Gênica , Ontologia Genética , Mutação , RNA Mensageiro/genética
10.
New Phytol ; 213(2): 531-536, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27780291

RESUMO

531 I. 531 II. 532 III. 532 IV. 534 V. 534 535 References 535 SUMMARY: Arbuscular mycorrhizal (AM) fungi associate with the vast majority of land plants, providing mutual nutritional benefits and protecting hosts against biotic and abiotic stresses. Significant progress was made recently in our understanding of the genomic organization, the obligate requirements, and the sexual nature of these fungi through the release and subsequent mining of genome sequences. Genomic and genetic approaches also improved our understanding of the signal repertoire used by AM fungi and their plant hosts to recognize each other for the initiation and maintenance of this association. Evolutionary and bioinformatic analyses of host and nonhost plant genomes represent novel ways with which to decipher host mechanisms controlling these associations and shed light on the stepwise acquisition of this genetic toolkit during plant evolution. Mining fungal and plant genomes along with evolutionary and genetic approaches will improve understanding of these symbiotic associations and, in the long term, their usefulness in agricultural settings.


Assuntos
Evolução Biológica , Genômica , Micorrizas/genética , Fungos/genética , Simbiose/genética
11.
Mol Ecol ; 25(12): 2816-32, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27092961

RESUMO

Arbuscular mycorrhizal (AM) fungi are known to exhibit high intra-organism genetic variation. However, information about intra- vs. interspecific variation among the genes commonly used in diversity surveys is limited. Here, the nuclear small subunit (SSU) rRNA gene, internal transcribed spacer (ITS) region and large subunit (LSU) rRNA gene portions were sequenced from 3 to 5 individual spores from each of two isolates of Rhizophagus irregularis and Gigaspora margarita. A total of 1482 Sanger sequences (0.5 Mb) from 239 clones were obtained, spanning ~4370 bp of the ribosomal operon when concatenated. Intrasporal and intra-isolate sequence variation was high for all three regions even though variant numbers were not exhausted by sequencing 12-40 clones per isolate. Intra-isolate nucleotide variation levels followed the expected order of ITS > LSU > SSU, but the values were strongly dependent on isolate identity. Single nucleotide polymorphism (SNP) densities over 4 SNP/kb in the ribosomal operon were detected in all four isolates. Automated operational taxonomic unit picking within the sequence set of known identity overestimated species richness with almost all cut-off levels, markers and isolates. Average intraspecific sequence similarity values were 99%, 96% and 94% for amplicons in SSU, LSU and ITS, respectively. The suitability of the central part of the SSU as a marker for AM fungal community surveys was further supported by its level of nucleotide variation, which is similar to that of the ITS region; its alignability across the entire phylum; its appropriate length for next-generation sequencing; and its ease of amplification in single-step PCR.


Assuntos
DNA Espaçador Ribossômico/genética , Variação Genética , Glomeromycota/genética , Subunidades Ribossômicas Maiores/genética , Subunidades Ribossômicas Menores/genética , DNA Fúngico/genética , Glomeromycota/classificação , Sequenciamento de Nucleotídeos em Larga Escala , Micorrizas/genética , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA
12.
Proc Natl Acad Sci U S A ; 110(50): 20117-22, 2013 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-24277808

RESUMO

The mutualistic symbiosis involving Glomeromycota, a distinctive phylum of early diverging Fungi, is widely hypothesized to have promoted the evolution of land plants during the middle Paleozoic. These arbuscular mycorrhizal fungi (AMF) perform vital functions in the phosphorus cycle that are fundamental to sustainable crop plant productivity. The unusual biological features of AMF have long fascinated evolutionary biologists. The coenocytic hyphae host a community of hundreds of nuclei and reproduce clonally through large multinucleated spores. It has been suggested that the AMF maintain a stable assemblage of several different genomes during the life cycle, but this genomic organization has been questioned. Here we introduce the 153-Mb haploid genome of Rhizophagus irregularis and its repertoire of 28,232 genes. The observed low level of genome polymorphism (0.43 SNP per kb) is not consistent with the occurrence of multiple, highly diverged genomes. The expansion of mating-related genes suggests the existence of cryptic sex-related processes. A comparison of gene categories confirms that R. irregularis is close to the Mucoromycotina. The AMF obligate biotrophy is not explained by genome erosion or any related loss of metabolic complexity in central metabolism, but is marked by a lack of genes encoding plant cell wall-degrading enzymes and of genes involved in toxin and thiamine synthesis. A battery of mycorrhiza-induced secreted proteins is expressed in symbiotic tissues. The present comprehensive repertoire of R. irregularis genes provides a basis for future research on symbiosis-related mechanisms in Glomeromycota.


Assuntos
Evolução Molecular , Genoma Fúngico/genética , Glomeromycota/genética , Micorrizas/genética , Plantas/microbiologia , Simbiose/genética , Sequência de Bases , Dados de Sequência Molecular , Análise de Sequência de DNA
13.
Angew Chem Int Ed Engl ; 55(34): 9868-71, 2016 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-27321954

RESUMO

Herein we introduce a powerful and fast method to produce nanominerals using a bottom up approach. The supercritical hydrothermal flow synthesis is exploited to produce model nanominerals by mimicking natural environments at high temperatures under pressure. This innovative concept is demonstrated with the talc synthesis; this represents a major technical breakthrough since it allows decreasing the mineral-synthesis time from tens of hours to tens of seconds. Through this example, we show these nanominerals exhibit new crystal-chemistry signals and new properties. This approach provides a means to reproduce the early stages of formation of minerals in different natural environments from sedimentary environments (low temperature and pressure) to hydrothermal/metamorphic environments (high temperature and high pressure).

14.
J Assist Reprod Genet ; 32(8): 1263-6, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26139154

RESUMO

PURPOSE: This study aimed to develop a method to detect ovarian residual disease by multicolor flow cytometry in acute leukemia patients. METHODS: We designed an experimental model consisting in adding acute leukemia cells to a cell suspension obtained from healthy ovarian cortex. Leukemic cell detection within the ovarian cell suspension required the development of a specific myeloid antibody panel different from that commonly used for minimal residual disease (MRD) monitoring in bone marrow. The method was then used to detect ovarian residual disease in 11 acute leukemia patients. RESULTS: Multicolor flow cytometry is able to evaluate the presence of viable leukemic cells in the ovarian cortex with good specificity and robust sensitivity of 10-4. We observed a good correlation between multicolor flow cytometry and quantitative polymerase chain reaction results. Ovarian residual disease detection by multicolor flow cytometry was positive in 3 out of 11 acute leukemia patients. CONCLUSION: Multicolor flow cytometry can potentially be applied to ovarian tissue from all acute leukemia patients and is essential to evaluate the risk of cancer re-seeding before autograft of ovarian tissue in case of acute leukemia.


Assuntos
Criopreservação/métodos , Citometria de Fluxo/métodos , Leucemia/patologia , Neoplasias Ovarianas/patologia , Neoplasias Ovarianas/secundário , Ovário/transplante , Feminino , Proteínas de Fusão bcr-abl/genética , Humanos , Neoplasia Residual , Reação em Cadeia da Polimerase/métodos , Sensibilidade e Especificidade
15.
Plant J ; 72(3): 512-22, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22775306

RESUMO

Most land plants live symbiotically with arbuscular mycorrhizal fungi. Establishment of this symbiosis requires signals produced by both partners: strigolactones in root exudates stimulate pre-symbiotic growth of the fungus, which releases lipochito-oligosaccharides (Myc-LCOs) that prepare the plant for symbiosis. Here, we have investigated the events downstream of this early signaling in the roots. We report that expression of miR171h, a microRNA that targets NSP2, is up-regulated in the elongation zone of the root during colonization by Rhizophagus irregularis (formerly Glomus intraradices) and in response to Myc-LCOs. Fungal colonization was much reduced by over-expressing miR171h in roots, mimicking the phenotype of nsp2 mutants. Conversely, in plants expressing an NSP2 mRNA resistant to miR171h cleavage, fungal colonization was much increased and extended into the elongation zone of the roots. Finally, phylogenetic analyses revealed that miR171h regulation of NSP2 is probably conserved among mycotrophic plants. Our findings suggest a regulatory mechanism, triggered by Myc-LCOs, that prevents over-colonization of roots by arbuscular mycorrhizal fungi by a mechanism involving miRNA-mediated negative regulation of NSP2.


Assuntos
Glomeromycota/fisiologia , Lipopolissacarídeos/metabolismo , Medicago truncatula/genética , MicroRNAs/genética , Micorrizas/fisiologia , Fatores de Transcrição/genética , Sítios de Ligação , Expressão Gênica , Regulação da Expressão Gênica de Plantas , Glomeromycota/citologia , Glomeromycota/genética , Glomeromycota/crescimento & desenvolvimento , Lactonas/metabolismo , Medicago truncatula/citologia , Medicago truncatula/microbiologia , Medicago truncatula/fisiologia , MicroRNAs/metabolismo , Micorrizas/citologia , Micorrizas/genética , Micorrizas/crescimento & desenvolvimento , Fenótipo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Raízes de Plantas/microbiologia , RNA de Plantas/genética , RNA de Plantas/metabolismo , Transdução de Sinais , Simbiose , Fatores de Transcrição/metabolismo , Regulação para Cima
16.
Hum Reprod ; 28(8): 2157-67, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23633552

RESUMO

STUDY QUESTION: How can leukemic cells be detected in cryopreserved ovarian tissue? SUMMARY ANSWER: Multicolor flow cytometry (FCM) is useful to evaluate the presence of viable leukemic cells in the ovarian cortex with a high specificity and a robust sensitivity. WHAT IS KNOWN ALREADY: Storing ovarian tissue is an option to preserve fertility before gonadotoxic radiotherapy or chemotherapy treatments. However, transplantation of cryopreserved ovarian cortex to women cured of leukemia is currently not possible due to the risk of cancer re-seeding. STUDY DESIGN, SIZE, DURATION: We developed an automated ovarian cortex dissociation technique and we used eight-color FCM to identify leukemic cells with a series of dilutions added to ovarian single cell suspensions obtained from healthy cortex. PARTICIPANTS/MATERIALS, SETTINGS, METHODS: Healthy ovarian cortex originated from women between 23 and 39 years of age undergoing laparoscopic ovarian drilling for polycystic ovary syndrome. Blood or bone marrow cells were collected in acute lymphoblastic leukemia (ALL) patients at diagnosis. MAIN RESULTS AND THE ROLE OF CHANCE: The tissue dissociation technique yield was 1.83 ± 1.49 × 10(6) viable nucleated cells per 100 mg of ovarian cortex. No cell exhibiting a leukemic phenotype was present in the normal ovarian cortex. Added leukemic cells were detected using their leukemia-associated phenotype up to a dilution of 10(-4). When specific gene rearrangements were present, they were detected by real-time quantitative PCR at the same dilution. The ovarian cortex from two leukemia patients was then used, respectively, as positive and negative controls. LIMITATIONS, REASONS FOR CAUTION: Making available minimal residual disease (MRD) detection techniques (multicolor FCM, PCR and xenograft), that can be used either alone or together, is essential to add a fail-safe oncological dimension to pre-autograft monitoring. WIDER IMPLICATIONS OF THE FINDINGS: This approach can be performed on fresh ovarian tissue during cryopreservation or on frozen/thawed tissue before reimplantation and it is currently the only available technique in cases of ALL where no molecular markers are identified. This new perspective should lead to studies on ovarian tissue from leukemia patients, for whom the presence of MRD should be established before autograft. STUDY FUNDINGS/COMPETING INTEREST(S): The study was supported by the BioMedicine Agency, the Committee of the League against Cancer, the Besançon University Hospital, DGOS/INSERM/INCa and the regional Council of Franche-Comté. There were no conflicts of interest to declare.


Assuntos
Citometria de Fluxo/métodos , Leucemia/patologia , Neoplasia Residual/patologia , Ovário/patologia , Adulto , Criopreservação , Feminino , Preservação da Fertilidade , Humanos , Ovário/transplante , Transplante Autólogo
17.
J Mech Behav Biomed Mater ; 138: 105640, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36566663

RESUMO

The success rate of assisted reproductive technologies could be greatly improved by selectively choosing egg cells (oocytes) with the greatest chance of fertilization. The goal of mechanical profiling is, thus, to improve predictive oocyte selection by isolating the mechanical properties of oocytes and correlating them to their reproductive potential. The restrictions on experimental platforms, however - including minimal invasiveness and practicality in laboratory implementation - greatly limits the data that can be acquired from a single oocyte. In this study, we perform indentation studies on human oocytes and characterize the mechanical properties of the zona pellucida, the outer layer of the oocyte. We obtain excellent fitting with our physical model when indenting with a flat surface and clearly illustrate localized shear-thinning behavior of the zona pellucida, which has not been previously reported. We conclude by outlining a promising methodology for isolating the mechanical properties of the cytoplasm using neural networks and optical images taken during indentation.


Assuntos
Oócitos , Zona Pelúcida , Humanos , Redes Neurais de Computação
18.
New Phytol ; 196(4): 1217-1227, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22967288

RESUMO

Arbuscular mycorrhizal (AM) fungi are involved in one of the most widespread plant-fungus interactions. A number of studies on the population dynamics of AM fungi have used mitochondrial (mt) DNA sequences, and yet mt AM fungus genomes are poorly known. To date, four mt genomes of three species of AM fungi are available, among which are two from Rhizophagus irregularis. In order to study intra- and interstrain mt genome variability of R. irregularis, we sequenced and de novo assembled four additional mt genomes of this species. We used 454 pyrosequencing and Illumina technologies to directly sequence mt genomes from total genomic DNA. The mt genomes are unique within each strain. Interstrain divergences in genome size, as a result of highly polymorphic intergenic and intronic sequences, were observed. The polymorphism is brought about by three types of variability generating element (VGE): homing endonucleases, DNA polymerase domain-containing open reading frames and small inverted repeats. Based on VGE positioning, mt sequences and nuclear markers, two subclades of R. irregularis were characterized. The discovery of VGEs highlights the great intraspecific plasticity of the R. irregularis mt genome. VGEs allow the design of powerful mt markers for the typing and monitoring of R. irregularis strains in genetic and population studies.


Assuntos
Genoma Mitocondrial , Glomeromycota/genética , Micorrizas/genética , Polimorfismo de Nucleotídeo Único , DNA Polimerase Dirigida por DNA/genética , Sequências Repetidas Invertidas , Repetições de Microssatélites , Fases de Leitura Aberta , Filogenia , Análise de Sequência de DNA/métodos
19.
J Gynecol Obstet Hum Reprod ; 51(4): 102346, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35227936

RESUMO

BACKGROUND: To study the repercussions of the COVID-19 pandemic for fertility preservation activities in France. BASIC PROCEDURES: A questionnaire was sent to all the fertility preservation centres, requesting, for fertility preservation techniques (gamete and gonadal tissue preservation), the number of patients managed before, during and after the lockdown, and the number of patients who were not able to have access to these techniques and thus suffered definitive losses of fertility, during the lockdown period in spring 2020. MAIN FINDINGS: Fertility preservation activities in France did not cease entirely during the lockdown, but a 42.6% decrease in activity was observed. After lockdown, the levels of sperm, testicular and ovarian tissue cryopreservation returned to pre-lockdown levels (95.2%). The restoration of activity was partial only for oocyte freezing, which reached a level 56.8% that before lockdown. In total, 45 patients (8.35%) lost all chance of fertility preservation during the lockdown period. PRINCIPAL CONCLUSIONS: In France, fertility preservation activities were significantly affected by the lockdown in spring 2020 linked to the COVID-19 pandemic.


Assuntos
COVID-19 , Preservação da Fertilidade , COVID-19/epidemiologia , COVID-19/prevenção & controle , Controle de Doenças Transmissíveis , Feminino , Preservação da Fertilidade/métodos , França/epidemiologia , Humanos , Pandemias/prevenção & controle , Inquéritos e Questionários
20.
J Ovarian Res ; 15(1): 9, 2022 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-35042558

RESUMO

BACKGROUND: Cryopreservation of ovarian tissue is a fertility-preservation option for women before gonadotoxic treatments. However, cryopreserved ovarian tissue transplantation must be performed with caution in women with malignancies that may metastasize to the ovaries. For this purpose, detecting minimal residual disease (MRD) in the ovarian cortex using sensitive methods is a crucial step. We developed an automated ovarian tissue dissociation method to obtain ovarian cell suspensions. RESULTS: We assessed MRD by multicolor flow cytometry (MFC) in cryopreserved ovarian cortex of 15 leukemia patients: 6 with B-cell acute lymphoblastic leukemia (B-ALL), 2 with T-cell acute lymphoblastic leukemia (T-ALL) and 7 with acute myeloid leukemia (AML). Ovarian MRD was positive in 5 of the 15 leukemia patients (one T-ALL and 4 AML). No B-ALL patient was positive by MFC. Quantitative reverse-transcribed polymerase chain reaction was performed when a molecular marker was available, and confirmed the MFC results for 3 patients tested. Xenografts into immunodeficient mice were also performed with ovarian cortical tissue from 10 leukemia patients, with no evidence of leukemic cells after the 6-month grafting period. CONCLUSIONS: In conclusion, this is the first study using MFC to detect MRD in ovarian cortical tissue from acute leukemia patients. MFC has been accepted in clinical practice for its ease of use, the large number of parameters available simultaneously, and high throughput analysis. We demonstrate here that MFC is a reliable method to detect MRD in cryopreserved ovarian tissue, with a view to controlling the oncological risk before ovarian tissue transplantation in leukemia patients.


Assuntos
Criopreservação , Citometria de Fluxo , Leucemia/patologia , Ovário/patologia , Adolescente , Adulto , Animais , Criança , Pré-Escolar , Feminino , Preservação da Fertilidade , Humanos , Camundongos , Neoplasia Residual , Neoplasias Ovarianas/patologia , Ensaios Antitumorais Modelo de Xenoenxerto , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA