Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
J Nutr ; 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39019160

RESUMO

BACKGROUND: Gut microbiome composition profoundly impacts host physiology and is modulated by several environmental factors, most prominently diet. The composition of gut microbiota changes over the lifespan, particularly during the earliest and latest stages. However, we know less about diet-aging interactions on the gut microbiome. We previously showed that diets with different glycemic indices, based on the ratio of rapidly digested amylopectin to slowly digested amylose, led to altered composition of gut microbiota in male C57BL/6J mice. OBJECTIVES: Here, we examined the role of aging in influencing dietary effects on gut microbiota composition and aimed to identify gut bacterial taxa that respond to diet and aging. METHODS: We studied 3 age groups of male C57BL/6J wild-type mice: young (4 mo), middle-aged (13.5 mo), and old (22 mo), all fed either high glycemic (HG) or low glycemic (LG) diets matched for caloric content and macronutrient composition. Fecal microbiome composition was determined by 16S rDNA metagenomic sequencing and was evaluated for changes in α- and ß-diversity and bacterial taxa that change by age, diet, or both. RESULTS: Young mice displayed lower α-diversity scores than middle-aged counterparts but exhibited more pronounced differences in ß-diversity between diets. In contrast, old mice had slightly lower α-diversity scores than middle-aged mice, with significantly higher ß-diversity distances. Within-group variance was lowest in young, LG-fed mice and highest in old, HG-fed mice. Differential abundance analysis revealed taxa associated with both aging and diet. Most differential taxa demonstrated significant interactions between diet and aging. Notably, several members of the Lachnospiraceae family increased with aging and HG diet, whereas taxa from the Bacteroides_H genus increased with the LG diet. Akkermansia muciniphila decreased with aging. CONCLUSIONS: These findings illustrate the complex interplay between diet and aging in shaping the gut microbiota, potentially contributing to age-related disease.

2.
Prog Retin Eye Res ; 101: 101260, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38521386

RESUMO

People are living longer and rates of age-related diseases such as age-related macular degeneration (AMD) are accelerating, placing enormous burdens on patients and health care systems. The quality of carbohydrate foods consumed by an individual impacts health. The glycemic index (GI) is a kinetic measure of the rate at which glucose arrives in the blood stream after consuming various carbohydrates. Consuming diets that favor slowly digested carbohydrates releases sugar into the bloodstream gradually after consuming a meal (low glycemic index). This is associated with reduced risk for major age-related diseases including AMD, cardiovascular disease, and diabetes. In comparison, consuming the same amounts of different carbohydrates in higher GI diets, releases glucose into the blood rapidly, causing glycative stress as well as accumulation of advanced glycation end products (AGEs). Such AGEs are cytotoxic by virtue of their forming abnormal proteins and protein aggregates, as well as inhibiting proteolytic and other protective pathways that might otherwise selectively recognize and remove toxic species. Using in vitro and animal models of glycative stress, we observed that consuming higher GI diets perturbs metabolism and the microbiome, resulting in a shift to more lipid-rich metabolomic profiles. Interactions between aging, diet, eye phenotypes and physiology were observed. A large body of laboratory animal and human clinical epidemiologic data indicates that consuming lower GI diets, or lower glycemia diets, is protective against features of early AMD (AMDf) in mice and AMD prevalence or AMD progression in humans. Drugs may be optimized to diminish the ravages of higher glycemic diets. Human trials are indicated to determine if AMD progression can be retarded using lower GI diets. Here we summarized the current knowledge regarding the pathological role of glycative stress in retinal dysfunction and how dietary strategies might diminish retinal disease.


Assuntos
Produtos Finais de Glicação Avançada , Degeneração Macular , Humanos , Degeneração Macular/etiologia , Animais , Produtos Finais de Glicação Avançada/metabolismo , Índice Glicêmico/fisiologia , Glicemia/metabolismo , Carboidratos da Dieta/efeitos adversos
3.
iScience ; 27(2): 108979, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38333717

RESUMO

A high glycemic index (HGI) diet induces hyperglycemia, a risk factor for diseases affecting multiple organ systems. Here, we evaluated tissue-specific adaptations in the liver and retina after feeding HGI diet to mice for 1 or 12 month. In the liver, genes associated with inflammation and fatty acid metabolism were altered within 1 month of HGI diet, whereas 12-month HGI diet-fed group showed dysregulated expression of cytochrome P450 genes and overexpression of lipogenic factors including Srebf1 and Elovl5. In contrast, retinal transcriptome exhibited HGI-related notable alterations in energy metabolism genes only after 12 months. Liver fatty acid profiles in HGI group revealed higher levels of monounsaturated and lower levels of saturated and polyunsaturated fatty acids. Additionally, HGI diet increased blood low-density lipoprotein, and diet-aging interactions affected expression of mitochondrial oxidative phosphorylation genes in the liver and disease-associated genes in retina. Thus, our findings provide new insights into retinal and hepatic adaptive mechanisms to dietary hyperglycemia.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA