Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Immunol ; 211(2): 187-198, 2023 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-37314416

RESUMO

Although several immunomodulatory drugs are available for multiple sclerosis (MS), most present significant side effects with long-term use. Therefore, delineation of nontoxic drugs for MS is an important area of research. ß-Hydroxy ß-methylbutyrate (HMB) is accessible in local GNC stores as a muscle-building supplement in humans. This study underlines the importance of HMB in suppressing clinical symptoms of experimental autoimmune encephalomyelitis (EAE) in mice, an animal model of MS. Dose-dependent study shows that oral HMB at a dose of 1 mg/kg body weight/d or higher significantly suppresses clinical symptoms of EAE in mice. Accordingly, orally administered HMB attenuated perivascular cuffing, preserved the integrity of the blood-brain barrier and blood-spinal cord barrier, inhibited inflammation, maintained the expression of myelin genes, and blocked demyelination in the spinal cord of EAE mice. From the immunomodulatory side, HMB protected regulatory T cells and suppressed Th1 and Th17 biasness. Using peroxisome proliferator-activated receptor (PPAR)α-/- and PPARß-/- mice, we observed that HMB required PPARß, but not PPARα, to exhibit immunomodulation and suppress EAE. Interestingly, HMB reduced the production of NO via PPARß to protect regulatory T cells. These results describe a novel anti-autoimmune property of HMB that may be beneficial in the treatment of MS and other autoimmune disorders.


Assuntos
Encefalomielite Autoimune Experimental , Esclerose Múltipla , PPAR beta , Humanos , Camundongos , Animais , PPAR beta/uso terapêutico , Esclerose Múltipla/tratamento farmacológico , Valeratos/uso terapêutico , Camundongos Endogâmicos C57BL
2.
Mol Cell Neurosci ; 120: 103731, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35487443

RESUMO

Myalgic Encephalomyelitis, also known as Chronic Fatigue Syndrome (ME/CFS), is a multisystem illness characterized by extreme muscle fatigue associated with pain, neurocognitive impairment, and chronic inflammation. Despite intense investigation, the molecular mechanism of this disease is still unknown. Here we demonstrate that autophagy-related protein ATG13 is strongly upregulated in the serum of ME/CFS patients, indicative of impairment in the metabolic events of autophagy. A Thioflavin T-based protein aggregation assay, array screening for autophagy-related factors, densitometric analyses, and confirmation with ELISA revealed that the level of ATG13 was strongly elevated in serum samples of ME/CFS patients compared to age-matched controls. Moreover, our microglia-based oxidative stress response experiments indicated that serum samples of ME/CFS patients evoke the production of reactive oxygen species (ROS) and nitric oxide in human HMC3 microglial cells, whereas neutralization of ATG13 strongly diminishes the production of ROS and NO, suggesting that ATG13 plays a role in the observed stress response in microglial cells. Finally, an in vitro ligand binding assay provided evidence that ATG13 employs the Receptor for Advanced Glycation End-products (RAGE) to stimulate ROS in microglial cells. Collectively, our results suggest that an impairment of autophagy following the release of ATG13 into serum could be a pathological signal in ME/CFS.


Assuntos
Síndrome de Fadiga Crônica , Proteínas Relacionadas à Autofagia/metabolismo , Síndrome de Fadiga Crônica/metabolismo , Síndrome de Fadiga Crônica/patologia , Humanos , Microglia/metabolismo , Estresse Oxidativo/fisiologia , Espécies Reativas de Oxigênio , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Fatores de Transcrição/metabolismo
3.
Proc Natl Acad Sci U S A ; 117(35): 21557-21567, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32817415

RESUMO

Multiple sclerosis (MS) is the most common human demyelinating disease of the central nervous system. The IL-12 family of cytokines has four members, which are IL-12 (p40:p35), IL-23 (p40:p19), the p40 monomer (p40), and the p40 homodimer (p402). Since all four members contain p40 in different forms, it is important to use a specific monoclonal antibody (mAb) to characterize these molecules. Here, by using such mAbs, we describe selective loss of p40 in serum of MS patients as compared to healthy controls. Similarly, we also observed decrease in p40 and increase in IL-12, IL-23, and p402 in serum of mice with experimental autoimmune encephalomyelitis (EAE), an animal model of MS, as compared to control mice. Interestingly, weekly supplementation of mouse and human recombinant p40 ameliorated clinical symptoms and disease progression of EAE. On the other hand, IL-12, IL-23, and p402 did not exhibit such inhibitory effect. In addition to EAE, p40 also suppressed collagen-induced arthritis in mice. Using IL-12Rß1-/-, IL-12Rß2-/-, and IL-12Rß1+/-/IL-12Rß2-/- mice, we observed that p40 required IL-12Rß1, but not IL-12Rß2, to suppress EAE. Interestingly, p40 arrested IL-12-, IL-23-, or p402-mediated internalization of IL-12Rß1, but neither IL-12Rß2 nor IL-23R, protected regulatory T cells, and suppressed Th1 and Th17 biasness. These studies identify p40 as an anti-autoimmune cytokine with a biological role different from IL-12, IL-23, and p402 in which it attenuates autoimmune signaling via suppression of IL-12Rß1 internalization, which may be beneficial in patients with MS and other autoimmune disorders.


Assuntos
Encefalomielite Autoimune Experimental/imunologia , Subunidade p40 da Interleucina-12/imunologia , Subunidade p40 da Interleucina-12/farmacologia , Receptores de Interleucina-12/antagonistas & inibidores , Adulto , Animais , Células Cultivadas , Modelos Animais de Doenças , Encefalomielite Autoimune Experimental/tratamento farmacológico , Feminino , Humanos , Interleucina-12/imunologia , Interleucina-12/metabolismo , Interleucina-23/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Esclerose Múltipla/sangue , Esclerose Múltipla/imunologia , Ligação Proteica , Receptores de Interleucina-12/imunologia , Proteínas Recombinantes/farmacologia , Transdução de Sinais , Células Th17/efeitos dos fármacos , Células Th17/imunologia
4.
Int J Mol Sci ; 24(10)2023 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-37240059

RESUMO

Myalgic encephalomyelitis or chronic fatigue syndrome (ME/CFS) is a multisystem chronic illness characterized by severe muscle fatigue, pain, dizziness, and brain fog. Many patients with ME/CFS experience orthostatic intolerance (OI), which is characterized by frequent dizziness, light-headedness, and feeling faint while maintaining an upright posture. Despite intense investigation, the molecular mechanism of this debilitating condition is still unknown. OI is often manifested by cardiovascular alterations, such as reduced cerebral blood flow, reduced blood pressure, and diminished heart rate. The bioavailability of tetrahydrobiopterin (BH4), an essential cofactor of endothelial nitric oxide synthase (eNOS) enzyme, is tightly coupled with cardiovascular health and circulation. To explore the role of BH4 in ME/CFS, serum samples of CFS patients (n = 32), CFS patients with OI only (n = 10; CFS + OI), and CFS patients with both OI and small fiber polyneuropathy (n = 12; CFS + OI + SFN) were subjected to BH4 ELISA. Interestingly, our results revealed that the BH4 expression is significantly high in CFS, CFS + OI, and CFS + OI + SFN patients compared to age-/gender-matched controls. Finally, a ROS production assay in cultured microglial cells followed by Pearson correlation statistics indicated that the elevated BH4 in serum samples of CFS + OI patients might be associated with the oxidative stress response. These findings suggest that the regulation of BH4 metabolism could be a promising target for understanding the molecular mechanism of CFS and CFS with OI.


Assuntos
Síndrome de Fadiga Crônica , Intolerância Ortostática , Humanos , Intolerância Ortostática/complicações , Intolerância Ortostática/diagnóstico , Projetos Piloto , Tontura/complicações , Síndrome de Fadiga Crônica/diagnóstico
5.
J Neurosci ; 41(10): 2287-2300, 2021 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-33514677

RESUMO

Parkinson's disease (PD) is the most common neurodegenerative movement disorder in humans. Despite intense investigations, effective therapies are not yet available to halt the progression of PD. Gemfibrozil, a Food and Drug Administration-approved lipid-lowering drug, is known to decrease the risk of coronary heart disease by increasing the level of high-density lipoprotein cholesterol and decreasing the level of low-density lipoprotein cholesterol. This study underlines the importance of gemfibrozil in protecting dopaminergic neurons in an animal model of PD. Oral administration of the human equivalent dose of gemfibrozil protected tyrosine hydroxylase (TH)-positive dopaminergic neurons in the substantia nigra pars compacta and TH fibers in the striatum of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-insulted mice of both sexes. Accordingly, gemfibrozil also normalized striatal neurotransmitters and improved locomotor activities in MPTP-intoxicated mice. Gemfibrozil-mediated protection of the nigrostriatal and locomotor activities in WT but not PPARα-/- mice from MPTP intoxication suggests that gemfibrozil needs the involvement of peroxisome proliferator-activated receptor α (PPARα) in protecting dopaminergic neurons. While investigating further mechanisms, we found that gemfibrozil stimulated the transcription of glial-derived neurotrophic factor (GDNF) gene in astrocytes via PPARα and that gemfibrozil protected nigral neurons, normalized striatal fibers and neurotransmitters, and improved locomotor activities in MPTP-intoxicated Gfafcre mice, but not GdnfΔastro mice lacking GDNF in astrocytes. These findings highlight the importance of the PPARα-dependent astroglial GDNF pathway in gemfibrozil-mediated protection of dopaminergic neurons in an animal model of PD and suggest the possible therapeutic use of gemfibrozil in PD patients.SIGNIFICANCE STATEMENT Increasing the level of glial cell-derived neurotrophic factor (GDNF) in the brain is important for the protection of dopamine neurons in Parkinson's disease (PD). Although gene manipulation and GDNF protein infusion into the brain are available options, it seems from the therapeutic angle that the best option would be to stimulate/induce the production of GDNF in vivo in the brain of PD patients. Here, we delineate that gemfibrozil, a lipid-lowering drug, stimulates GDNF in astrocytes via peroxisome proliferator-activated receptor α (PPARα). Moreover, gemfibrozil protected nigral neurons, normalized striatal fibers and neurotransmitters, and improved locomotor activities from MPTP toxicity via the PPARα-dependent astroglial GDNF pathway. These studies highlight a new property of gemfibrozil and suggest its possible therapeutic use in PD patients.


Assuntos
Astrócitos/efeitos dos fármacos , Neurônios Dopaminérgicos/efeitos dos fármacos , Genfibrozila/farmacologia , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , PPAR alfa/metabolismo , Transtornos Parkinsonianos/patologia , Animais , Astrócitos/metabolismo , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , Inibidores do Citocromo P-450 CYP2C8/farmacologia , Neurônios Dopaminérgicos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Fármacos Neuroprotetores/farmacologia , Transtornos Parkinsonianos/metabolismo , Transdução de Sinais/efeitos dos fármacos
6.
J Immunol ; 2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-31043478

RESUMO

Parkinson disease (PD) is the most common neurodegenerative movement disorder in humans. Despite intense investigation, no effective therapy is available to stop the progression of this disease. It is becoming clear that both innate and adaptive immune responses are active in PD. Accordingly, we have reported a marked increase in RANTES and eotaxin, chemokines that are involved in T cell trafficking, in vivo in the substantia nigra (SN) and the serum of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-intoxicated hemiparkinsonian monkeys. Because RANTES and eotaxin share a common receptor, CCR5, we examined the efficacy of maraviroc, an inhibitor of CCR5 and a Food and Drug Administration-approved drug against HIV infection, in hemiparkinsonian rhesus monkeys. First, we found glial limitans injury, loss of GFAP immunostaining, and infiltration of T cells across the endothelial monolayer in SN of hemiparkinsonian monkeys. However, oral administration of a low dose of maraviroc protected glia limitans partially, maintained the integrity of endothelial monolayer, reduced the infiltration of T cells, attenuated neuroinflammation, and decreased α-synucleinopathy in the SN. Accordingly, maraviroc treatment also protected both the nigrostriatal axis and neurotransmitters and improved motor functions in hemiparkinsonian monkeys. These results suggest that low-dose maraviroc and other CCR5 antagonists may be helpful for PD patients.

7.
Proc Natl Acad Sci U S A ; 115(31): E7408-E7417, 2018 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-30012602

RESUMO

Despite its long history, until now, no receptor has been identified for aspirin, one of the most widely used medicines worldwide. Here we report that peroxisome proliferator-activated receptor alpha (PPARα), a nuclear hormone receptor involved in fatty acid metabolism, serves as a receptor of aspirin. Detailed proteomic analyses including cheminformatics, thermal shift assays, and TR-FRET revealed that aspirin, but not other structural homologs, acts as a PPARα ligand through direct binding at the Tyr314 residue of the PPARα ligand-binding domain. On binding to PPARα, aspirin stimulated hippocampal plasticity via transcriptional activation of cAMP response element-binding protein (CREB). Finally, hippocampus-dependent behavioral analyses, calcium influx assays in hippocampal slices and quantification of dendritic spines demonstrated that low-dose aspirin treatment improved hippocampal plasticity and memory in FAD5X mice, but not in FAD5X/Ppara-null mice. These findings highlight a property of aspirin: stimulating hippocampal plasticity via direct interaction with PPARα.


Assuntos
Aspirina/farmacologia , Hipocampo/efeitos dos fármacos , Memória/efeitos dos fármacos , Plasticidade Neuronal/efeitos dos fármacos , PPAR alfa/metabolismo , Animais , Aspirina/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Hipocampo/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Plasticidade Neuronal/fisiologia , Sinapses/efeitos dos fármacos , Sinapses/fisiologia
8.
Neurobiol Dis ; 135: 104352, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-30579705

RESUMO

Recent evidence provides support for involvement of the microbiota-gut-brain axis in Parkinson's disease (PD) pathogenesis. We propose that a pro-inflammatory intestinal milieu, due to intestinal hyper-permeability and/or microbial dysbiosis, initiates or exacerbates PD pathogenesis. One factor that can cause intestinal hyper-permeability and dysbiosis is chronic stress which has been shown to accelerate neuronal degeneration and motor deficits in Parkinsonism rodent models. We hypothesized that stress-induced intestinal barrier dysfunction and microbial dysbiosis lead to a pro-inflammatory milieu that exacerbates the PD phenotype in the low-dose oral rotenone PD mice model. To test this hypothesis, mice received unpredictable restraint stress (RS) for 12 weeks, and during the last six weeks mice also received a daily administration of low-dose rotenone (10 mg/kg/day) orally. The initial six weeks of RS caused significantly higher urinary cortisol, intestinal hyperpermeability, and decreased abundance of putative "anti-inflammatory" bacteria (Lactobacillus) compared to non-stressed mice. Rotenone alone (i.e., without RS) disrupted the colonic expression of the tight junction protein ZO-1, increased oxidative stress (N-tyrosine), increased myenteric plexus enteric glial cell GFAP expression and increased α-synuclein (α-syn) protein levels in the colon compared to controls. Restraint stress exacerbated these rotenone-induced changes. Specifically, RS potentiated rotenone-induced effects in the colon including: 1) intestinal hyper-permeability, 2) disruption of tight junction proteins (ZO-1, Occludin, Claudin1), 3) oxidative stress (N-tyrosine), 4) inflammation in glial cells (GFAP + enteric glia cells), 5) α-syn, 6) increased relative abundance of fecal Akkermansia (mucin-degrading Gram-negative bacteria), and 7) endotoxemia. In addition, RS promoted a number of rotenone-induced effects in the brain including: 1) reduced number of resting microglia and a higher number of dystrophic/phagocytic microglia as well as (FJ-C+) dying cells in the substantia nigra (SN), 2) increased lipopolysaccharide (LPS) reactivity in the SN, and 3) reduced dopamine (DA) and DA metabolites (DOPAC, HVA) in the striatum compared to control mice. Our findings support a model in which chronic stress-induced, gut-derived, pro-inflammatory milieu exacerbates the PD phenotype via a dysfunctional microbiota-gut-brain axis.


Assuntos
Gastroenteropatias/complicações , Microbioma Gastrointestinal/efeitos dos fármacos , Doença de Parkinson/patologia , Rotenona/farmacologia , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Modelos Animais de Doenças , Gastroenteropatias/induzido quimicamente , Humanos , Doença de Parkinson/complicações
9.
J Neurosci Res ; 98(4): 626-631, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31797405

RESUMO

Acetyl salicylic acid, commonly known as aspirin, has been being widely used as an anti-inflammatory drug for almost 100 years. However, there was no receptor known for this popular drug. Recently, we have established that peroxisome proliferator-activated receptor alpha (PPARα) acts as a novel receptor of aspirin. Activation of PPARα by aspirin stimulated a series of downstream signaling pathways that could potentially ameliorate different Alzheimer's disease (AD)-related pathologies. In this mini-review, we have discussed how aspirin-PPARα interaction plays a pivotal role in the amelioration of AD pathology via the stimulation of neurotrophic factors, upregulation of plasticity-associated genes, and removal of plaque burden in hippocampal neurons.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Aspirina/administração & dosagem , Encéfalo/fisiopatologia , Fármacos Neuroprotetores/administração & dosagem , PPAR alfa/farmacologia , PPAR alfa/uso terapêutico , Animais , Encéfalo/efeitos dos fármacos , Humanos , Plasticidade Neuronal/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Placa Amiloide/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos
10.
Proc Natl Acad Sci U S A ; 114(43): 11482-11487, 2017 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-29073075

RESUMO

Cancer cells are adept at evading cell death, but the underlying mechanisms are poorly understood. IL-12 plays a critical role in the early inflammatory response to infection and in the generation of T-helper type 1 cells, favoring cell-mediated immunity. IL-12 is composed of two different subunits, p40 and p35. This study underlines the importance of IL-12 p40 monomer (p40) in helping cancer cells to escape cell death. We found that different mouse and human cancer cells produced greater levels of p40 than p40 homodimer (p402), IL-12, or IL-23. Similarly, the serum level of p40 was much greater in patients with prostate cancer than in healthy control subjects. Selective neutralization of p40, but not p402, by mAb stimulated death in different cancer cells in vitro and in vivo in a tumor model. Interestingly, p40 was involved in the arrest of IL-12 receptor (IL-12R) IL-12Rß1, but not IL-12Rß2, in the membrane, and that p40 neutralization induced the internalization of IL-12Rß1 via caveolin and caused cancer cell death via the IL-12-IFN-γ pathway. These studies identify a role of p40 monomer in helping cancer cells to escape cell death via suppression of IL-12Rß1 internalization.


Assuntos
Interferon gama/metabolismo , Subunidade p40 da Interleucina-12/metabolismo , Interleucina-12/metabolismo , Neoplasias da Próstata/metabolismo , Idoso , Idoso de 80 Anos ou mais , Animais , Apoptose , Linhagem Celular Tumoral , Células Cultivadas , Regulação Neoplásica da Expressão Gênica , Humanos , Interferon gama/genética , Interleucina-12/genética , Masculino , Camundongos , Pessoa de Meia-Idade , Neoplasias Experimentais/metabolismo , Próstata/metabolismo
11.
J Neurochem ; 151(1): 50-63, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31273781

RESUMO

Neuroinflammation is being recognized as a hallmark of different neurodegenerative disorders, including Alzheimer's disease. Suppressor of cytokine signaling 3 (SOCS3) is an anti-inflammatory molecule, which is known to inhibit cytokine signaling and inflammatory gene expression in different cells. However, the pathways by which SOCS3 could be up-regulated in brain cells are poorly understood. Aspirin is a widely available pain reliever that is showing promise beyond its known pain-relieving capacity. This study underlines the importance of aspirin in upregulating SOCS3 in astrocytes and microglia. Aspirin increased the expression of Socs3 mRNA and protein in mouse astrocytes and BV-2 microglial cells in both a time- and dose-dependent manner. While investigating the mechanism, we found that Socs3 gene promoter harbors peroxisome proliferator response element and that aspirin up-regulated SOCS3 in astrocytes isolated from PPARß (-/-), but not PPARα (-/-), mice. Accordingly, aspirin increased SOCS3 in vivo in the cortex of wild type and PPARß (-/-), but not PPARα (-/-), mice. Similarly, aspirin treatment increased astroglial and microglial SOCS3 in the cortex of FAD5X, but not FAD5X/PPARα (-/-), mice. Finally, recruitment of PPARα by aspirin to the proximal, but not distal, peroxisome proliferator response element of the Socs3 promoter suggests that aspirin increases the transcription of Socs3 gene via PPARα. This study describes a novel property of aspirin in elevating SOCS3 in glial cells via PPARα and suggests that aspirin may be further considered for therapeutic application in neuroinflammatory and neurodegenerative disorders.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Aspirina/farmacologia , Neuroglia/efeitos dos fármacos , PPAR alfa/metabolismo , Proteína 3 Supressora da Sinalização de Citocinas/metabolismo , Doença de Alzheimer/metabolismo , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neuroglia/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Regulação para Cima
12.
Neurobiol Dis ; 127: 362-373, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30928643

RESUMO

The late-infantile Batten disease or late-infantile neuronal ceroid lipofuscinosis (LINCL) is an autosomal recessive lysosomal storage disorder caused by mutations in the Cln2 gene leading to deficiency of lysosomal enzyme tripeptidyl peptidase 1 (TPP1). At present, available options for this fatal disorder are enzyme replacement therapy and gene therapy, which are extensively invasive and expensive. Our study demonstrates that 3-hydroxy-(2,2)-dimethyl butyrate (HDMB), a brain endogenous molecule, is capable of stimulating TPP1 expression and activity in mouse primary astrocytes and a neuronal cell line. HDMB activated peroxisome proliferator-activated receptor-α (PPARα), which, by forming heterodimer with Retinoid X receptor-α (RXRα), transcriptionally upregulated the Cln2 gene. Moreover, by using primary astrocytes from wild type, PPARα-/- and PPARß-/- mice, we demonstrated that HDMB specifically required PPARα for inducing TPP1 expression. Finally, oral administration of HDMB to Cln2 heterozygous (Cln2+/-) mice led to a marked upregulation of TPP1 expression in the motor cortex and striatum in a PPARα-dependent fashion. Our study suggests that HDMB, a brain endogenous ligand of PPARα, might have therapeutic importance for LINCL treatment.


Assuntos
Aminopeptidases/metabolismo , Astrócitos/efeitos dos fármacos , Butiratos/farmacologia , Dipeptidil Peptidases e Tripeptidil Peptidases/metabolismo , Neurônios/efeitos dos fármacos , PPAR alfa/metabolismo , Serina Proteases/metabolismo , Aminopeptidases/genética , Animais , Astrócitos/metabolismo , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Butiratos/uso terapêutico , Linhagem Celular , Dipeptidil Peptidases e Tripeptidil Peptidases/genética , Modelos Animais de Doenças , Camundongos , Camundongos Knockout , Lipofuscinoses Ceroides Neuronais/tratamento farmacológico , Lipofuscinoses Ceroides Neuronais/genética , Lipofuscinoses Ceroides Neuronais/metabolismo , Neurônios/metabolismo , Serina Proteases/genética , Tripeptidil-Peptidase 1 , Regulação para Cima
13.
Neurobiol Dis ; 124: 379-395, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30578827

RESUMO

The response of the lysosomes, the waste clearance machinery of the cell, to different environmental stimuli is coordinated by a gene network with a master regulator Transcription factor EB (TFEB) at the core. Disruption of multiple facets of the lysosomal and autophagic network has been linked to various neurodegenerative and lysosomal storage disorders, making TFEB an attractive therapeutic target to rescue or augment lysosomal function under pathological scenario. In this study, we demonstrate that cinnamic acid, a naturally occurring plant-based product, induces lysosomal biogenesis in mouse primary brain cells via upregulation of TFEB. We delineate that cinnamic acid activates the nuclear hormone receptor PPARα to transcriptionally upregulate TFEB and stimulate lysosomal biogenesis. Moreover, using in-silico and biochemical approaches we established that cinnamic acid serves as a potent ligand for peroxisome proliferator-activated receptor α (PPARα). Finally, cinnamic acid treatment in male and female 5× Familial Alzheimer's disease (5XFAD) mice remarkably reduced cerebral amyloid-beta plaque burden and improved memory via PPARα. Therefore, stimulation of lysosomal biogenesis by cinnamic acid may have therapeutic implications for treatment of Alzheimer's disease and other lysosomal disorders originating from accumulation of toxic protein aggregates.


Assuntos
Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Cinamatos/farmacologia , Lisossomos/efeitos dos fármacos , PPAR alfa/metabolismo , Placa Amiloide/patologia , Animais , Modelos Animais de Doenças , Feminino , Masculino , Camundongos
15.
Neurobiol Dis ; 132: 104575, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31445159

RESUMO

Although Parkinson's disease (PD) is a progressive neurodegenerative disease, the disease does not progress or persist in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model, the most common animal model of PD. Recently, we have described that supplementation of regulated on activation, normal T cell expressed and secreted (RANTES), a chemokine known to drive infiltration of T cells, induces persistent nigrostriatal pathology in MPTP mouse model. However, which particular T cell subsets are recruited to the substantia nigra (SN) by RANTES is not known. Here, by adoptive transfer of different subset of T cells from tomato red transgenic mice to MPTP-intoxicated immunodeficient Rag1-/- mice, we describe that invasion of Th17 cells into the SN is stimulated by exogenous RANTES administration. On the other hand, RANTES supplementation remained unable to influence the infiltration of Th1 and Tregs into the SN of MPTP-insulted Rag1-/- mice. Accordingly, RANTES supplementation increased MPTP-induced TH cell loss in Rag1-/-mice receiving Th17, but neither Th1 nor Tregs. RANTES-mediated aggravation of nigral TH neurons also paralleled with significant DA loss in striatum and locomotor deficits in MPTP-intoxicated Rag1-/- mice receiving Th17 cells. Finally, we demonstrate that levels of IL-17 (a Th17-specific cytokine) and RANTES are higher in serum of PD patients than age-matched controls and that RANTES positively correlated with IL-17 in serum of PD patients. Together, these results highlight the importance of RANTES-Th17 pathway in progressive dopaminergic neuronal loss and associated PD pathology.


Assuntos
Quimiocina CCL5/imunologia , Neurônios Dopaminérgicos/patologia , Transtornos Parkinsonianos/imunologia , Substância Negra/imunologia , Células Th17/imunologia , Animais , Modelos Animais de Doenças , Camundongos , Camundongos Endogâmicos C57BL , Degeneração Neural/imunologia , Degeneração Neural/patologia , Doença de Parkinson/imunologia , Doença de Parkinson/patologia , Transtornos Parkinsonianos/patologia , Substância Negra/patologia
16.
J Immunol ; 198(11): 4312-4326, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28446566

RESUMO

Although the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model is the most widely used animal model for Parkinson's disease (PD), it is known that nigrostriatal pathologies do not persist in the acute MPTP mouse model. This study highlights the importance of adaptive immunity in driving persistent and progressive disease in acute MPTP-intoxicated mice. Although marked infiltration of T cells into the nigra was found on 1 d of MPTP insult, T cell infiltration decreased afterward, becoming normal on 30 d of insult. Interestingly, twice-weekly supplementation of RANTES and eotaxin, chemokines that are involved in T cell trafficking, drove continuous T cell infiltration to the nigra and incessant glial inflammation. Supplementation of RANTES and eotaxin was also associated with the induction of nigral α-synuclein pathology, persistent loss of dopaminergic neurons and striatal neurotransmitters, and continuous impairment of motor functions in MPTP-intoxicated mice. In contrast, supplementation of TNF-α and IL-1ß, widely studied proinflammatory cytokines, did not induce persistent disease in MPTP-insulted mice. Our results suggest that induction of adaptive immunity by RANTES and eotaxin could hold the key for driving persistent nigrostriatal pathologies in the MPTP mouse model, and that targeting these factors may halt disease progression in PD patients.


Assuntos
Imunidade Adaptativa , Intoxicação por MPTP/imunologia , Intoxicação por MPTP/fisiopatologia , Substância Negra/imunologia , Doença Aguda , Animais , Quimiocina CCL11/administração & dosagem , Quimiocina CCL5/administração & dosagem , Progressão da Doença , Inflamação , Interleucina-1beta/administração & dosagem , Intoxicação por MPTP/patologia , Camundongos , Camundongos Endogâmicos C57BL , Substância Negra/patologia , Fator de Necrose Tumoral alfa/administração & dosagem
17.
Nat Chem Biol ; 12(12): 1075-1083, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27748752

RESUMO

Peroxisome proliferator-activated receptor-α (PPARα) regulates hepatic fatty acid catabolism and mediates the metabolic response to starvation. Recently we found that PPARα is constitutively activated in nuclei of hippocampal neurons and controls plasticity via direct transcriptional activation of CREB. Here we report the discovery of three endogenous PPARα ligands-3-hydroxy-(2,2)-dimethyl butyrate, hexadecanamide, and 9-octadecenamide-in mouse brain hippocampus. Mass spectrometric detection of these compounds in mouse hippocampal nuclear extracts, in silico interaction studies, time-resolved FRET analyses, and thermal shift assay results clearly indicated that these three compounds served as ligands of PPARα. Site-directed mutagenesis studies further revealed that PPARα Y464 and Y314 are involved in binding these hippocampal ligands. Moreover, these ligands activated PPARα and upregulated the synaptic function of hippocampal neurons. These results highlight the discovery of hippocampal ligands of PPARα capable of modulating synaptic functions.


Assuntos
Hipocampo/metabolismo , Hidroxibutiratos/farmacologia , PPAR alfa/metabolismo , Animais , Relação Dose-Resposta a Droga , Hidroxibutiratos/química , Ligantes , Camundongos , Camundongos Knockout , Modelos Moleculares , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Ácidos Oleicos/química , Ácidos Oleicos/farmacologia , Ácidos Palmíticos/química , Ácidos Palmíticos/farmacologia , Relação Estrutura-Atividade
18.
J Immunol ; 197(8): 3099-3110, 2016 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-27605008

RESUMO

Upregulation and/or maintenance of regulatory T cells (Tregs) during autoimmune insults may have therapeutic efficacy in autoimmune diseases. Earlier we have reported that sodium benzoate (NaB), a metabolite of cinnamon and a Food and Drug Administration-approved drug against urea cycle disorders, upregulates Tregs and protects mice from experimental allergic encephalomyelitis, an animal model of multiple sclerosis. However, mechanisms by which NaB increases Tregs are poorly understood. Because TGF-ß is an important inducer of Tregs, we examined the effect of NaB on the status of TGF-ß. In this study, we demonstrated that NaB induced the expression of TGF-ß mRNA and protein in normal as well as proteolipid protein-primed splenocytes. The presence of a consensus STAT6 binding site in the promoter of the TGF-ß gene, activation of STAT6 in splenocytes by NaB, recruitment of STAT6 to the TGF-ß promoter by NaB, and abrogation of NaB-induced expression of TGF-ß in splenocytes by small interfering RNA knockdown of STAT6 suggest that NaB induces the expression of TGF-ß via activation of STAT6. Furthermore, we demonstrated that blocking of TGF-ß by neutralizing Abs abrogated NaB-mediated protection of Tregs and experimental allergic encephalomyelitis. These studies identify a new function of NaB in upregulating TGF-ß via activation of STAT6, which may be beneficial in MS patients.


Assuntos
Encefalomielite Autoimune Experimental/imunologia , Conservantes de Alimentos/uso terapêutico , Esclerose Múltipla/imunologia , Fator de Transcrição STAT6/metabolismo , Benzoato de Sódio/uso terapêutico , Linfócitos T Reguladores/efeitos dos fármacos , Fator de Crescimento Transformador beta/metabolismo , Animais , Anticorpos Bloqueadores/administração & dosagem , Células Cultivadas , Cinnamomum zeylanicum/metabolismo , Encefalomielite Autoimune Experimental/terapia , Feminino , Fatores de Transcrição Forkhead/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Esclerose Múltipla/terapia , Proteína Proteolipídica de Mielina/imunologia , Fragmentos de Peptídeos/imunologia , Regiões Promotoras Genéticas/genética , Fator de Transcrição STAT6/genética , Benzoato de Sódio/metabolismo , Linfócitos T Reguladores/imunologia , Fator de Crescimento Transformador beta/genética , Regulação para Cima
19.
J Biol Chem ; 291(29): 15267-81, 2016 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-27226559

RESUMO

Parkinson disease (PD) is second only to Alzheimer disease as the most common human neurodegenerative disorder. Despite intense investigation, no interdictive therapy is available for PD. Recent studies indicate that both innate and adaptive immune processes are active in PD. Accordingly, we found a rapid increase in RANTES (regulated on activation normal T cell expressed and secreted) and eotaxin, chemokines that are involved in T cell trafficking, in vivo in the substantia nigra pars compacta and the serum of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-intoxicated mice. RANTES and eotaxin were also up-regulated in the substantia nigra pars compacta of post-mortem PD brains as compared with age-matched controls. Therefore, we investigated whether neutralization of RANTES and eotaxin could protect against nigrostriatal degeneration in MPTP-intoxicated mice. Interestingly, after peripheral administration, functional blocking antibodies against RANTES and eotaxin reduced the infiltration of CD4(+) and CD8(+) T cells into the nigra, attenuated nigral expression of proinflammatory molecules, and suppressed nigral activation of glial cells. These findings paralleled dopaminergic neuronal protection, normalized striatal neurotransmitters, and improved motor functions in MPTP-intoxicated mice. Therefore, we conclude that attenuation of the chemokine-dependent adaptive immune response may be of therapeutic benefit for PD patients.


Assuntos
Quimiocina CCL11/antagonistas & inibidores , Quimiocina CCL5/antagonistas & inibidores , Neurônios Dopaminérgicos/imunologia , Transtornos Parkinsonianos/terapia , Imunidade Adaptativa , Idoso , Idoso de 80 Anos ou mais , Animais , Anticorpos Bloqueadores/administração & dosagem , Encéfalo/imunologia , Encéfalo/patologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/patologia , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/patologia , Quimiocina CCL11/biossíntese , Quimiocina CCL11/imunologia , Quimiocina CCL5/biossíntese , Quimiocina CCL5/imunologia , Modelos Animais de Doenças , Neurônios Dopaminérgicos/patologia , Humanos , Terapia de Imunossupressão , Mediadores da Inflamação/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microglia/imunologia , Microglia/patologia , Pessoa de Meia-Idade , Transtornos Parkinsonianos/imunologia , Transtornos Parkinsonianos/patologia , Substância Negra/imunologia , Substância Negra/patologia
20.
J Biol Chem ; 288(12): 8299-8312, 2013 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-23404502

RESUMO

Neurotrophins, such as brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3), are believed to be genuine molecular mediators of neuronal growth and homeostatic synapse activity. However, levels of these neurotrophic factors decrease in different brain regions of patients with Alzheimer disease (AD). Induction of astrocytic neurotrophin synthesis is a poorly understood phenomenon but represents a plausible therapeutic target because neuronal neurotrophin production is aberrant in AD and other neurodegenerative diseases. Here, we delineate that sodium phenylbutyrate (NaPB), a Food and Drug Administration-approved oral medication for hyperammonemia, induces astrocytic BDNF and NT-3 expression via the protein kinase C (PKC)-cAMP-response element-binding protein (CREB) pathway. NaPB treatment increased the direct association between PKC and CREB followed by phosphorylation of CREB (Ser(133)) and induction of DNA binding and transcriptional activation of CREB. Up-regulation of markers for synaptic function and plasticity in cultured hippocampal neurons by NaPB-treated astroglial supernatants and its abrogation by anti-TrkB blocking antibody suggest that NaPB-induced astroglial neurotrophins are functionally active. Moreover, oral administration of NaPB increased the levels of BDNF and NT-3 in the CNS and improved spatial learning and memory in a mouse model of AD. Our results highlight a novel neurotrophic property of NaPB that may be used to augment neurotrophins in the CNS and improve synaptic function in disease states such as AD.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Astrócitos/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Neurotrofina 3/metabolismo , Fenilbutiratos/farmacologia , Administração Oral , Doença de Alzheimer/metabolismo , Doença de Alzheimer/psicologia , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/fisiologia , Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Forma Celular , Células Cultivadas , Formiatos/farmacologia , Proteína Glial Fibrilar Ácida/metabolismo , Hipocampo/patologia , Humanos , Masculino , Memória/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurotrofina 3/genética , Fenilbutiratos/administração & dosagem , Fosforilação , Cultura Primária de Células , Proteína Quinase C , Processamento de Proteína Pós-Traducional , Receptores de Fator de Crescimento Neural/genética , Receptores de Fator de Crescimento Neural/metabolismo , Regulação para Cima/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA