Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Immunity ; 51(5): 856-870.e5, 2019 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-31747582

RESUMO

Naive CD8+ T cells differentiating into effector T cells increase glucose uptake and shift from quiescent to anabolic metabolism. Although much is known about the metabolism of cultured T cells, how T cells use nutrients during immune responses in vivo is less well defined. Here, we combined bioenergetic profiling and 13C-glucose infusion techniques to investigate the metabolism of CD8+ T cells responding to Listeria infection. In contrast to in vitro-activated T cells, which display hallmarks of Warburg metabolism, physiologically activated CD8+ T cells displayed greater rates of oxidative metabolism, higher bioenergetic capacity, differential use of pyruvate, and prominent flow of 13C-glucose carbon to anabolic pathways, including nucleotide and serine biosynthesis. Glucose-dependent serine biosynthesis mediated by the enzyme Phgdh was essential for CD8+ T cell expansion in vivo. Our data highlight fundamental differences in glucose use by pathogen-specific T cells in vivo, illustrating the impact of environment on T cell metabolic phenotypes.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Metabolismo Energético , Glucose/metabolismo , Ativação Linfocitária/imunologia , Metaboloma , Metabolômica , Animais , Proliferação de Células , Cromatografia Gasosa-Espectrometria de Massas , Glicólise , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Ativação Linfocitária/genética , Metabolômica/métodos , Camundongos , Estresse Oxidativo , Viroses/genética , Viroses/imunologia , Viroses/metabolismo , Viroses/virologia
2.
J Biol Chem ; 294(51): 19785-19794, 2019 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-31694919

RESUMO

Upon immune recognition of viruses, the mammalian innate immune response activates a complex signal transduction network to combat infection. This activation requires phosphorylation of key transcription factors regulating IFN production and signaling, including IFN regulatory factor 3 (IRF3) and STAT1. The mechanisms regulating these STAT1 and IRF3 phosphorylation events remain unclear. Here, using human and mouse cell lines along with gene microarrays, quantitative RT-PCR, viral infection and plaque assays, and reporter gene assays, we demonstrate that a microRNA cluster conserved among bilaterian animals, encoding miR-96, miR-182, and miR-183, regulates IFN signaling. In particular, we observed that the miR-183 cluster promotes IFN production and signaling, mediated by enhancing IRF3 and STAT1 phosphorylation. We also found that the miR-183 cluster activates the IFN pathway and inhibits vesicular stomatitis virus infection by directly targeting several negative regulators of IRF3 and STAT1 activities, including protein phosphatase 2A (PPP2CA) and tripartite motif-containing 27 (TRIM27). Overall, our work reveals an important role of the evolutionarily conserved miR-183 cluster in the regulation of mammalian innate immunity.


Assuntos
Imunidade Inata , Fator Regulador 3 de Interferon/metabolismo , MicroRNAs/metabolismo , Família Multigênica , Fator de Transcrição STAT1/metabolismo , Células A549 , Animais , Fibroblastos/imunologia , Fibroblastos/virologia , Genes Reporter , Células HEK293 , Células Hep G2 , Humanos , Interferons/imunologia , Células MCF-7 , Macrófagos/imunologia , Macrófagos/virologia , Camundongos , Análise de Sequência com Séries de Oligonucleotídeos , Fosforilação , Transdução de Sinais , Replicação Viral
3.
Biochem Biophys Res Commun ; 526(3): 641-646, 2020 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-32248971

RESUMO

Oncolytic viruses (OVs) are a class of biotherapeutics that are currently being explored for the treatment of cancer. While showing promise in several pre-clinical and clinical studies, systemic delivery of these anti-cancer agents is hampered by inefficient tumor targeting and a host immune system that is highly evolved to detect and neutralize pathogens. To shield the virus from immune recognition and destruction, the use of cells as delivery vehicles has been explored for the systemic delivery of OVs. Though several types of cell carriers are able to protect OVs during intravenous delivery, many still lack the ability to specifically home to or accumulate within the tumor microenvironment. Overall, OV-based therapeutics could benefit from tumor targeting strategies to maximize tumor-specific delivery and minimize infection of off-target tissues. In the current study, we examine magnetic targeting as a strategy to improve OV infection of tumor cells in vitro. We found that magnetic targeting of magnetically-labeled VSV particles or VSV-infected cell carriers resulted in increased infection and killing of tumor cells. Furthermore, this enhanced infection of target tumor cells was observed even in the presence of virus-specific neutralizing antibodies. Overall, our findings suggest that magnetic targeting strategies can improve the infection of tumor cells and may be a viable strategy to improve the tumor-targeted delivery of oncolytic VSV-based therapeutics.


Assuntos
Sistemas de Liberação de Medicamentos , Magnetismo , Neoplasias/terapia , Terapia Viral Oncolítica/métodos , Vírus Oncolíticos/fisiologia , Animais , Anticorpos Neutralizantes/imunologia , Linhagem Celular , Drosophila/citologia , Sistemas de Liberação de Medicamentos/métodos , Fenômenos Magnéticos , Magnetismo/métodos , Camundongos , Neoplasias/imunologia , Vírus Oncolíticos/imunologia
4.
Nat Chem Biol ; 11(12): 988-93, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26479438

RESUMO

Immune regulation of cellular metabolism can be responsible for successful responses to invading pathogens. Viruses alter their hosts' cellular metabolism to facilitate infection. Conversely, the innate antiviral responses of mammalian cells target these metabolic pathways to restrict viral propagation. We identified miR-130b and miR-185 as hepatic microRNAs (miRNAs) whose expression is stimulated by 25-hydroxycholesterol (25-HC), an antiviral oxysterol secreted by interferon-stimulated macrophages and dendritic cells, during hepatitis C virus (HCV) infection. However, 25-HC only directly stimulated miR-185 expression, whereas HCV regulated miR-130b expression. Independently, miR-130b and miR-185 inhibited HCV infection. In particular, miR-185 significantly restricted host metabolic pathways crucial to the HCV life cycle. Interestingly, HCV infection decreased miR-185 and miR-130b levels to promote lipid accumulation and counteract 25-HC's antiviral effect. Furthermore, miR-185 can inhibit other viruses through the regulation of immunometabolic pathways. These data establish these microRNAs as a key link between innate defenses and metabolism in the liver.


Assuntos
Hepatite C/imunologia , Hepatite C/metabolismo , Fígado/imunologia , Fígado/metabolismo , MicroRNAs/metabolismo , Antivirais/metabolismo , Antivirais/farmacologia , Linhagem Celular , Hepacivirus/efeitos dos fármacos , Hepatite C/tratamento farmacológico , Humanos , Hidroxicolesteróis/farmacologia , Fígado/efeitos dos fármacos , Fígado/virologia , MicroRNAs/genética , Conformação Molecular
5.
Breast Cancer Res ; 18(1): 83, 2016 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-27503504

RESUMO

BACKGROUND: Breast cancer is the most common malignant disease amongst Western women. The lack of treatment options for patients with chemotherapy-resistant or recurrent cancers is pushing the field toward the rapid development of novel therapies. The use of oncolytic viruses is a promising approach for the treatment of disseminated diseases like breast cancer, with the first candidate recently approved by the Food and Drug Administration for use in patients. In this report, we demonstrate the compatibility of oncolytic virotherapy and chemotherapy using various murine breast cancer models. This one-two punch has been explored in the past by several groups with different viruses and drugs and was shown to be a successful approach. Our strategy is to combine Paclitaxel, one of the most common drugs used to treat patients with breast cancer, and the oncolytic Rhabdovirus Maraba-MG1, a clinical trial candidate in a study currently recruiting patients with late-stage metastatic cancer. METHODS: We used the EMT6, 4 T1 and E0771 murine breast cancer models to evaluate in vitro and in vivo the effects of co-treatment with MG1 and Paclitaxel. Treatment-induced cytotoxicity was assessed and plaque assays, flow cytometry, microscopy and immunocytochemistry analysis were performed to quantify virus production and transgene expression. Orthotopically implanted tumors were measured during and after treatment to evaluate efficacy and Kaplan-Meier survival curves were generated. RESULTS: Our data demonstrate not only the compatibility of the treatments, but also their synergistic cytopathic activity. With Paclitaxel, EMT6 and 4 T1 tumors demonstrated increased virus production both in vitro and in vivo. Our results also show that Paclitaxel does not impair the safety profile of the virus treatment. Importantly, when combined, MG1 and the drug controlled tumor growth and prolonged survival. CONCLUSIONS: The combination of MG1 and Paclitaxel improved efficacy in all of the breast cancer models we tested and thus is a promising alternative approach for the treatment of patients with refractory breast cancer. Our strategy has potential for rapid translation to the clinic, given the current clinical status of both agents.


Assuntos
Antineoplásicos Fitogênicos/uso terapêutico , Neoplasias da Mama/terapia , Terapia Viral Oncolítica , Vírus Oncolíticos , Paclitaxel/uso terapêutico , Animais , Antineoplásicos Fitogênicos/administração & dosagem , Neoplasias da Mama/mortalidade , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Terapia Combinada , Modelos Animais de Doenças , Feminino , Humanos , Interferon beta/farmacologia , Camundongos , Terapia Viral Oncolítica/métodos , Vírus Oncolíticos/genética , Paclitaxel/administração & dosagem , Carga Tumoral/efeitos dos fármacos , Replicação Viral , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Mol Ther ; 22(6): 1188-1197, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24569832

RESUMO

Oncolytic viruses (OVs) and bacteria share the property of tumor-selective replication following systemic administration. In the case of nonpathogenic bacteria, tumor selectivity relates to their ability to grow extracellularly within tumor stroma and is therefore ideally suited to restricting the production of bacterially produced therapeutic agents to tumors. We have previously shown the ability of the type 1 interferon antagonist B18R to enhance the replication and spread of vesicular stomatitis virus (VSV) by overcoming related cellular innate immunity. In this study, we utilized nonpathogenic bacteria (E. coli) expressing B18R to facilitate tumor-specific production of B18R, resulting in a microenvironment depleted of bioactive antiviral cytokine, thus "preconditioning" the tumor to enhance subsequent tumor destruction by the OV. Both in vitro and in vivo infection by VSVΔ51 was greatly enhanced by B18R produced from E. coli. Moreover, a significant increase in therapeutic efficacy resulted from intravenous (i.v.) injection of bacteria to tumor-bearing mice 5 days prior to i.v. VSVΔ51 administration, as evidenced by a significant reduction in tumor growth and increased survival in mice. Our strategy is the first example where two such diverse microorganisms are rationally combined and demonstrates the feasibility of combining complementary microorganisms to improve therapeutic outcome.


Assuntos
Carcinoma Pulmonar de Lewis/patologia , Escherichia coli/genética , Vírus Oncolíticos/genética , Vesiculovirus/genética , Proteínas Virais/metabolismo , Animais , Carcinoma Pulmonar de Lewis/microbiologia , Carcinoma Pulmonar de Lewis/terapia , Carcinoma Pulmonar de Lewis/virologia , Linhagem Celular Tumoral , Escherichia coli/metabolismo , Feminino , Vetores Genéticos/administração & dosagem , Vetores Genéticos/farmacologia , Células HT29 , Humanos , Injeções Intravenosas , Interferon Tipo I/genética , Interferon Tipo I/metabolismo , Camundongos , Terapia Viral Oncolítica/métodos , Vírus Oncolíticos/fisiologia , Vesiculovirus/fisiologia , Proteínas Virais/genética , Replicação Viral
7.
J Virol ; 87(4): 2363-6, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23221568

RESUMO

Attenuated Semliki Forest virus (SFV) may be suitable for targeting malignant glioma due to its natural neurotropism, but its replication in brain tumor cells may be restricted by innate antiviral defenses. We attempted to facilitate SFV replication in glioma cells by combining it with vaccinia virus, which is capable of antagonizing such defenses. Surprisingly, we found parenchymal mouse brain tumors to be refractory to both viruses. Also, vaccinia virus appears to be sensitive to SFV-induced antiviral interference.


Assuntos
Glioma/terapia , Vírus Oncolíticos/crescimento & desenvolvimento , Vírus Oncolíticos/imunologia , Vírus da Floresta de Semliki/crescimento & desenvolvimento , Vírus da Floresta de Semliki/imunologia , Vaccinia virus/crescimento & desenvolvimento , Vaccinia virus/imunologia , Animais , Modelos Animais de Doenças , Camundongos
8.
Sci Adv ; 10(22): eadj1431, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38809979

RESUMO

Infusion of 13C-labeled metabolites provides a gold standard for understanding the metabolic processes used by T cells during immune responses in vivo. Through infusion of 13C-labeled metabolites (glucose, glutamine, and acetate) in Listeria monocytogenes-infected mice, we demonstrate that CD8 T effector (Teff) cells use metabolites for specific pathways during specific phases of activation. Highly proliferative early Teff cells in vivo shunt glucose primarily toward nucleotide synthesis and leverage glutamine anaplerosis in the tricarboxylic acid (TCA) cycle to support adenosine triphosphate and de novo pyrimidine synthesis. In addition, early Teff cells rely on glutamic-oxaloacetic transaminase 1 (Got1)-which regulates de novo aspartate synthesis-for effector cell expansion in vivo. CD8 Teff cells change fuel preference over the course of infection, switching from glutamine- to acetate-dependent TCA cycle metabolism late in infection. This study provides insights into the dynamics of Teff metabolism, illuminating distinct pathways of fuel consumption associated with CD8 Teff cell function in vivo.


Assuntos
Acetatos , Linfócitos T CD8-Positivos , Isótopos de Carbono , Glutamina , Glutamina/metabolismo , Animais , Linfócitos T CD8-Positivos/metabolismo , Acetatos/metabolismo , Camundongos , Listeriose/metabolismo , Listeriose/imunologia , Listeriose/microbiologia , Listeria monocytogenes , Ciclo do Ácido Cítrico , Glucose/metabolismo , Camundongos Endogâmicos C57BL
9.
J Exp Med ; 221(9)2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39150482

RESUMO

Coordination of cellular metabolism is essential for optimal T cell responses. Here, we identify cytosolic acetyl-CoA production as an essential metabolic node for CD8 T cell function in vivo. We show that CD8 T cell responses to infection depend on acetyl-CoA derived from citrate via the enzyme ATP citrate lyase (ACLY). However, ablation of ACLY triggers an alternative, acetate-dependent pathway for acetyl-CoA production mediated by acyl-CoA synthetase short-chain family member 2 (ACSS2). Mechanistically, acetate fuels both the TCA cycle and cytosolic acetyl-CoA production, impacting T cell effector responses, acetate-dependent histone acetylation, and chromatin accessibility at effector gene loci. When ACLY is functional, ACSS2 is not required, suggesting acetate is not an obligate metabolic substrate for CD8 T cell function. However, loss of ACLY renders CD8 T cells dependent on acetate (via ACSS2) to maintain acetyl-CoA production and effector function. Together, ACLY and ACSS2 coordinate cytosolic acetyl-CoA production in CD8 T cells to maintain chromatin accessibility and T cell effector function.


Assuntos
ATP Citrato (pro-S)-Liase , Acetatos , Acetilcoenzima A , Linfócitos T CD8-Positivos , Cromatina , Camundongos Endogâmicos C57BL , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Animais , Cromatina/metabolismo , Acetilcoenzima A/metabolismo , ATP Citrato (pro-S)-Liase/metabolismo , ATP Citrato (pro-S)-Liase/genética , Camundongos , Acetatos/metabolismo , Acetato-CoA Ligase/metabolismo , Acetato-CoA Ligase/genética , Acetilação , Camundongos Knockout , Citosol/metabolismo , Histonas/metabolismo
10.
Nat Commun ; 15(1): 4096, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38750019

RESUMO

The presence of heterogeneity in responses to oncolytic virotherapy poses a barrier to clinical effectiveness, as resistance to this treatment can occur through the inhibition of viral spread within the tumor, potentially leading to treatment failures. Here we show that 4-octyl itaconate (4-OI), a chemical derivative of the Krebs cycle-derived metabolite itaconate, enhances oncolytic virotherapy with VSVΔ51 in various models including human and murine resistant cancer cell lines, three-dimensional (3D) patient-derived colon tumoroids and organotypic brain tumor slices. Furthermore, 4-OI in combination with VSVΔ51 improves therapeutic outcomes in a resistant murine colon tumor model. Mechanistically, we find that 4-OI suppresses antiviral immunity in cancer cells through the modification of cysteine residues in MAVS and IKKß independently of the NRF2/KEAP1 axis. We propose that the combination of a metabolite-derived drug with an oncolytic virus agent can greatly improve anticancer therapeutic outcomes by direct interference with the type I IFN and NF-κB-mediated antiviral responses.


Assuntos
Terapia Viral Oncolítica , Vírus Oncolíticos , Succinatos , Animais , Humanos , Terapia Viral Oncolítica/métodos , Succinatos/farmacologia , Camundongos , Linhagem Celular Tumoral , Interferon Tipo I/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Neoplasias do Colo/terapia , Neoplasias do Colo/imunologia , Neoplasias do Colo/tratamento farmacológico , Antivirais/farmacologia , NF-kappa B/metabolismo , Quinase I-kappa B/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Inflamação/tratamento farmacológico , Feminino , Vírus da Estomatite Vesicular Indiana/fisiologia , Vírus da Estomatite Vesicular Indiana/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
11.
Proc Natl Acad Sci U S A ; 107(4): 1576-81, 2010 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-20080710

RESUMO

Oncolytic viruses constitute a promising therapy against malignant gliomas (MGs). However, virus-induced type I IFN greatly limits its clinical application. The kinase mammalian target of rapamycin (mTOR) stimulates type I IFN production via phosphorylation of its effector proteins, 4E-BPs and S6Ks. Here we show that mouse embryonic fibroblasts and mice lacking S6K1 and S6K2 are more susceptible to vesicular stomatitis virus (VSV) infection than their WT counterparts as a result of an impaired type I IFN response. We used this knowledge to employ a pharmacoviral approach to treat MGs. The highly specific inhibitor of mTOR rapamycin, in combination with an IFN-sensitive VSV-mutant strain (VSV(DeltaM51)), dramatically increased the survival of immunocompetent rats bearing MGs. More importantly, VSV(DeltaM51) selectively killed tumor, but not normal cells, in MG-bearing rats treated with rapamycin. These results demonstrate that reducing type I IFNs through inhibition of mTORC1 is an effective strategy to augment the therapeutic activity of VSV(DeltaM51).


Assuntos
Glioma/metabolismo , Glioma/terapia , Interferon Tipo I/biossíntese , Fatores de Transcrição/metabolismo , Estomatite Vesicular/metabolismo , Vesiculovirus/fisiologia , Animais , Linhagem Celular , Linhagem Celular Tumoral , Feminino , Glioma/genética , Glioma/virologia , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos , Camundongos Knockout , Complexos Multiproteicos , Transplante de Neoplasias , Terapia Viral Oncolítica , Proteínas , Ratos , Ratos Endogâmicos F344 , Proteínas Quinases S6 Ribossômicas/deficiência , Proteínas Quinases S6 Ribossômicas/metabolismo , Proteínas Quinases S6 Ribossômicas 90-kDa/deficiência , Proteínas Quinases S6 Ribossômicas 90-kDa/metabolismo , Sirolimo/farmacologia , Serina-Treonina Quinases TOR , Estomatite Vesicular/genética , Estomatite Vesicular/virologia , Vesiculovirus/genética
12.
bioRxiv ; 2023 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-37333111

RESUMO

Infusion of 13C-labeled metabolites provides a gold-standard for understanding the metabolic processes used by T cells during immune responses in vivo. Through infusion of 13C-labeled metabolites (glucose, glutamine, acetate) in Listeria monocytogenes (Lm)-infected mice, we demonstrate that CD8+ T effector (Teff) cells utilize metabolites for specific pathways during specific phases of activation. Highly proliferative early Teff cells in vivo shunt glucose primarily towards nucleotide synthesis and leverage glutamine anaplerosis in the tricarboxylic acid (TCA) cycle to support ATP and de novo pyrimidine synthesis. Additionally, early Teff cells rely on glutamic-oxaloacetic transaminase 1 (Got1)-which regulates de novo aspartate synthesis-for effector cell expansion in vivo. Importantly, Teff cells change fuel preference over the course of infection, switching from glutamine- to acetate-dependent TCA cycle metabolism late in infection. This study provides insights into the dynamics of Teff metabolism, illuminating distinct pathways of fuel consumption associated with Teff cell function in vivo.

13.
Mol Ther ; 19(5): 886-94, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21364541

RESUMO

Oncolytic viruses (OVs) have been engineered or selected for cancer cell-specific infection however, we have found that following intravenous administration of vesicular stomatitis virus (VSV), tumor cell killing rapidly extends far beyond the initial sites of infection. We show here for the first time that VSV directly infects and destroys tumor vasculature in vivo but leaves normal vasculature intact. Three-dimensional (3D) reconstruction of infected tumors revealed that the majority of the tumor mass lacks significant blood flow in contrast to uninfected tumors, which exhibit relatively uniform perfusion. VSV replication in tumor neovasculature and spread within the tumor mass, initiates an inflammatory reaction including a neutrophil-dependent initiation of microclots within tumor blood vessels. Within 6 hours of intravenous administration of VSV and continuing for at least 24 hours, we observed the initiation of blood clots within the tumor vasculature whereas normal vasculature remained clot free. Blocking blood clot formation with thrombin inhibitors prevented tumor vascular collapse. Our results demonstrate that the therapeutic activity of an OV can go far beyond simple infection and lysis of malignant cells.


Assuntos
Adenocarcinoma/irrigação sanguínea , Adenocarcinoma/terapia , Neovascularização Patológica/genética , Neovascularização Patológica/terapia , Terapia Viral Oncolítica/métodos , Vírus Oncolíticos/genética , Vírus da Estomatite Vesicular Indiana , Adenocarcinoma/genética , Animais , Coagulação Sanguínea , Linhagem Celular Tumoral , Proliferação de Células , Camundongos , Camundongos Endogâmicos BALB C , Neutrófilos , Trombina/antagonistas & inibidores
14.
Cell Rep ; 38(9): 110446, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35235777

RESUMO

The factors that promote T cell expansion are not fully known. Creatine is an abundant circulating metabolite that has recently been implicated in T cell function; however, its cell-autonomous role in immune-cell function is unknown. Here, we show that creatine supports cell-intrinsic CD8+ T cell homeostasis. We further identify creatine kinase B (CKB) as the creatine kinase isoenzyme that supports these T cell properties. Loss of the creatine transporter (Slc6a8) or Ckb results in compromised CD8+ T cell expansion in response to infection without influencing adenylate energy charge. Rather, loss of Slc6a8 or Ckb disrupts naive T cell homeostasis and weakens TCR-mediated activation of mechanistic target of rapamycin complex 1 (mTORC1) signaling required for CD8+ T cell expansion. These data demonstrate a cell-intrinsic role for creatine transport and creatine transphosphorylation, independent of their effects on global cellular energy charge, in supporting CD8+ T cell homeostasis and effector function.


Assuntos
Linfócitos T CD8-Positivos , Creatina , Creatina/metabolismo , Creatina Quinase/metabolismo , Fosforilação , Transdução de Sinais
15.
Nat Commun ; 13(1): 1898, 2022 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-35393414

RESUMO

Recent advances in cancer therapeutics clearly demonstrate the need for innovative multiplex therapies that attack the tumour on multiple fronts. Oncolytic or "cancer-killing" viruses (OVs) represent up-and-coming multi-mechanistic immunotherapeutic drugs for the treatment of cancer. In this study, we perform an in-vitro screen based on virus-encoded artificial microRNAs (amiRNAs) and find that a unique amiRNA, herein termed amiR-4, confers a replicative advantage to the VSVΔ51 OV platform. Target validation of amiR-4 reveals ARID1A, a protein involved in chromatin remodelling, as an important player in resistance to OV replication. Virus-directed targeting of ARID1A coupled with small-molecule inhibition of the methyltransferase EZH2 leads to the synthetic lethal killing of both infected and uninfected tumour cells. The bystander killing of uninfected cells is mediated by intercellular transfer of extracellular vesicles carrying amiR-4 cargo. Altogether, our findings establish that OVs can serve as replicating vehicles for amiRNA therapeutics with the potential for combination with small molecule and immune checkpoint inhibitor therapy.


Assuntos
Vesículas Extracelulares , MicroRNAs , Neoplasias , Terapia Viral Oncolítica , Vírus Oncolíticos , Humanos , MicroRNAs/genética , Neoplasias/terapia , Vírus Oncolíticos/genética
16.
Sci Rep ; 10(1): 7838, 2020 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-32398698

RESUMO

One-carbon metabolism fuels the high demand of cancer cells for nucleotides and other building blocks needed for increased proliferation. Although inhibitors of this pathway are widely used to treat many cancers, their global impact on anabolic and catabolic processes remains unclear. Using a combination of real-time bioenergetics assays and metabolomics approaches, we investigated the global effects of methotrexate on cellular metabolism. We show that methotrexate treatment increases the intracellular concentration of the metabolite AICAR, resulting in AMPK activation. Methotrexate-induced AMPK activation leads to decreased one-carbon metabolism gene expression and cellular proliferation as well as increased global bioenergetic capacity. The anti-proliferative and pro-respiratory effects of methotrexate are AMPK-dependent, as cells with reduced AMPK activity are less affected by methotrexate treatment. Conversely, the combination of methotrexate with the AMPK activator, phenformin, potentiates its anti-proliferative activity in cancer cells. These data highlight a reciprocal effect of methotrexate on anabolic and catabolic processes and implicate AMPK activation as a metabolic determinant of methotrexate response.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Antineoplásicos/farmacologia , Metotrexato/farmacologia , Transdução de Sinais/efeitos dos fármacos , Biguanidas/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Respiração Celular/efeitos dos fármacos , Sinergismo Farmacológico , Humanos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/patologia
17.
Cell Rep ; 31(5): 107585, 2020 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-32375032

RESUMO

Dendritic cells, cells of the innate immune system, are found in a steady state poised to respond to activating stimuli. Once stimulated, they rapidly undergo dynamic changes in gene expression to adopt an activated phenotype capable of stimulating immune responses. We find that the microRNA miR-9 is upregulated in both bone marrow-derived DCs and conventional DC1s but not in conventional DC2s following stimulation. miR-9 expression in BMDCs and conventional DC1s promotes enhanced DC activation and function, including the ability to stimulate T cell activation and control tumor growth. We find that miR-9 regulated the expression of several negative regulators of transcription, including the transcriptional repressor Polycomb group factor 6 (Pcgf6). These findings demonstrate that miR-9 facilitates the transition of DCs from steady state to mature state by regulating the expression of several negative regulators of DC function in a cell-type-specific manner.


Assuntos
Diferenciação Celular/genética , Células Dendríticas/metabolismo , Ativação Linfocitária/genética , MicroRNAs/genética , Diferenciação Celular/imunologia , Células Dendríticas/imunologia , Humanos , MicroRNAs/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Regulação para Cima
18.
Cell Metab ; 31(2): 250-266.e9, 2020 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-32023446

RESUMO

Epigenetic modifications on DNA and histones regulate gene expression by modulating chromatin accessibility to transcription machinery. Here we identify methionine as a key nutrient affecting epigenetic reprogramming in CD4+ T helper (Th) cells. Using metabolomics, we showed that methionine is rapidly taken up by activated T cells and serves as the major substrate for biosynthesis of the universal methyl donor S-adenosyl-L-methionine (SAM). Methionine was required to maintain intracellular SAM pools in T cells. Methionine restriction reduced histone H3K4 methylation (H3K4me3) at the promoter regions of key genes involved in Th17 cell proliferation and cytokine production. Applied to the mouse model of multiple sclerosis (experimental autoimmune encephalomyelitis), dietary methionine restriction reduced the expansion of pathogenic Th17 cells in vivo, leading to reduced T cell-mediated neuroinflammation and disease onset. Our data identify methionine as a key nutritional factor shaping Th cell proliferation and function in part through regulation of histone methylation.


Assuntos
Encefalomielite Autoimune Experimental , Epigênese Genética/efeitos dos fármacos , Histonas/metabolismo , Metionina , Esclerose Múltipla , Células Th17/metabolismo , Animais , Proliferação de Células , Citocinas/metabolismo , Modelos Animais de Doenças , Encefalomielite Autoimune Experimental/tratamento farmacológico , Encefalomielite Autoimune Experimental/metabolismo , Células HEK293 , Humanos , Metionina/metabolismo , Metionina/farmacologia , Metilação , Camundongos Endogâmicos C57BL , Camundongos Knockout , Esclerose Múltipla/tratamento farmacológico , Esclerose Múltipla/metabolismo , Células Th17/citologia
19.
Sci Rep ; 9(1): 1865, 2019 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-30755678

RESUMO

The use of oncolytic viruses (OVs) for cancer treatment is emerging as a successful strategy that combines the direct, targeted killing of the cancer with the induction of a long-lasting anti-tumor immune response. Using multiple aggressive murine models of triple-negative breast cancer, we have recently demonstrated that the early administration of oncolytic Maraba virus (MRB) prior to surgical resection of the primary tumor is sufficient to minimize the metastatic burden, protect against tumor rechallenge, cure a fraction of the mice and sensitize refractory tumors to immune checkpoint blockade without the need for further treatment. Here, we apply our surgical model to other OVs: Vesicular stomatitis virus (VSV), Adenovirus (Ad), Reovirus (Reo) and Herpes simplex virus (HSV) and show that all of the tested OVs could positively change the outcome of the treated animals. The growth of the primary and secondary tumors was differently affected by the various OVs and most of the viruses conferred survival benefits in this neoadjuvant setting despite the absence of direct treatment following rechallenge. This study establishes that OV-therapy confers long-term protection when administered in the pre-operative window of opportunity.


Assuntos
Neoplasias Mamárias Experimentais/prevenção & controle , Terapia Neoadjuvante/métodos , Terapia Viral Oncolítica/métodos , Adenoviridae , Animais , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Chlorocebus aethiops , Modelos Animais de Doenças , Feminino , Células HEK293 , Humanos , Neoplasias Mamárias Experimentais/terapia , Camundongos , Camundongos Endogâmicos BALB C , Transplante de Neoplasias , Vírus Oncolíticos , Período Pré-Operatório , Reoviridae , Simplexvirus , Células Vero , Vesiculovirus
20.
Cancer Res ; 79(3): 445-451, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30573521

RESUMO

Memory CD8+ T cells (Tmem) are superior mediators of adoptive cell therapy (ACT) compared with effector CD8+ T cells (Teff) due to increased persistence in vivo. Underpinning Tmem survival is a shift in cellular metabolism away from aerobic glycolysis towards fatty acid oxidation (FAO). Here we investigated the impact of the peroxisome proliferator-activated receptor (PPAR) agonist GW501516 (GW), an agent known to boost FAO in other tissues, on CD8+ T-cell metabolism, function, and efficacy in a murine ACT model. Via activation of both PPARα and PPARδ/ß, GW treatment increased expression of carnitine palmitoyl transferase 1a, the rate-limiting enzyme of FAO, in activated CD8+ T cells. Using a metabolomics approach, we demonstrated that GW increased the abundance of multiple different acylcarnitines, consistent with enhanced FAO. T cells activated in the presence of GW and inflammatory signals, either mature dendritic cells or IL12, also demonstrated enhanced production of IFNγ and expression of T-bet. Despite high expression of T-bet, a characteristic of short-lived effector cells, GW-treated cells demonstrated enhanced persistence in vivo and superior efficacy in a model of ACT. Collectively, these data identify combined PPARα and PPARδ/ß agonists as attractive candidates for further studies and rapid translation into clinical trials of ACT. SIGNIFICANCE: Dual activation of peroxisome proliferator-activated receptors α and δ improves the efficacy of adoptive cell therapy by reprogramming T-cell metabolism and cytokine expression.


Assuntos
Imunoterapia Adotiva , Inflamação/genética , Neoplasias/genética , PPAR alfa/genética , PPAR delta/genética , Animais , Linfócitos T CD8-Positivos/imunologia , Ácidos Graxos/genética , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Inflamação/imunologia , Inflamação/patologia , Inflamação/terapia , Interferon gama/genética , Interleucina-12/genética , Interleucina-12/imunologia , Metabolismo dos Lipídeos/genética , Camundongos , Neoplasias/imunologia , Neoplasias/patologia , Neoplasias/terapia , Oxirredução , PPAR alfa/agonistas , PPAR delta/agonistas , PPAR beta/agonistas , PPAR beta/genética , Tiazóis/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA