Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Appl Environ Microbiol ; 79(18): 5450-7, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23793630

RESUMO

Viruses are the most abundant and diverse biological entities within soils, yet their ecological impact is largely unknown. Defining how soil viral communities change with perturbation or across environments will contribute to understanding the larger ecological significance of soil viruses. A new approach to examining the composition of soil viral communities based on random PCR amplification of polymorphic DNA (RAPD-PCR) was developed. A key methodological improvement was the use of viral metagenomic sequence data for the design of RAPD-PCR primers. This metagenomically informed approach to primer design enabled the optimization of RAPD-PCR sensitivity for examining changes in soil viral communities. Initial application of RAPD-PCR viral fingerprinting to soil viral communities demonstrated that the composition of autochthonous soil viral assemblages noticeably changed over a distance of meters along a transect of Antarctic soils and across soils subjected to different land uses. For Antarctic soils, viral assemblages segregated upslope from the edge of dry valley lakes. In the case of temperate soils at the Kellogg Biological Station, viral communities clustered according to land use treatment. In both environments, soil viral communities changed along with environmental factors known to shape the composition of bacterial host communities. Overall, this work demonstrates that RAPD-PCR fingerprinting is an inexpensive, high-throughput means for addressing first-order questions of viral community dynamics within environmental samples and thus fills a methodological gap between narrow single-gene approaches and comprehensive shotgun metagenomic sequencing for the analysis of viral community diversity.


Assuntos
Biodiversidade , Impressões Digitais de DNA/métodos , Técnica de Amplificação ao Acaso de DNA Polimórfico/métodos , Microbiologia do Solo , Virologia/métodos , Vírus/classificação , Vírus/isolamento & purificação , Custos e Análise de Custo , Impressões Digitais de DNA/economia , Ensaios de Triagem em Larga Escala/economia , Ensaios de Triagem em Larga Escala/métodos , Técnica de Amplificação ao Acaso de DNA Polimórfico/economia , Virologia/economia , Vírus/genética
2.
Front Microbiol ; 11: 1494, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32733413

RESUMO

As reported in many aquatic environments, recent studies in terrestrial ecosystems implicate a role for viruses in shaping the structure, function, and evolution of prokaryotic soil communities. However, given the heterogeneity of soil and the physical constraints (i.e., pore-scale hydrology and solid-phase adsorption of phage and host cells) on the mobility of viruses and bacteria, phage-host interactions likely differ from those in aquatic systems. In this study, temporal changes in the population dynamics of viruses and bacteria in soils under different land management practices were examined. The results showed that bacterial abundance was significantly and positively correlated to both virus and inducible prophage abundance. Bacterial and viral abundance were also correlated with soil organic carbon and nitrogen content as well as with C:N ratio. The seasonal variability in viral abundance increased with soil organic carbon content. The prokaryotic community structure was influenced more by land use than by seasonal variation though considerable variation was evident in the early plant successional and grassland sites. The free extracellular viral communities were also separated by land use, and the forest soil viral assemblage exhibiting the most seasonal variability was more distinct from the other sites. Viral assemblages from the agricultural soils exhibited the least seasonal variability. Similar patterns were observed for inducible prophage viral assemblages. Seasonal variability of viral assemblages was greater in mitomycin-C (mitC) induced prophages than in extracellular viruses irrespective of land use and management. Taken together, the data suggest that soil viral production and decay are likely balanced but there was clear evidence that the structure of viral assemblages is influenced by land use and by season.

3.
Appl Environ Microbiol ; 75(22): 7142-52, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19783745

RESUMO

Prophage typically are induced to a lytic cycle under stressful environmental conditions or when the host's survival is threatened. However, stress-independent, spontaneous induction also occurs in nature and may be cell density dependent, but the in vivo signal(s) that can trigger induction is unknown. In the present study, we report that acyl-homoserine lactones (AHL), the essential signaling molecules of quorum sensing in many gram-negative bacteria, can trigger phage production in soil and groundwater bacteria. This phenomenon also was operative in a lambda lysogen of Escherichia coli. In model coculture systems, we monitored the real-time AHL production from Pseudomonas aeruginosa PAO1 using an AHL bioluminescent sensor and demonstrated that lambda-prophage induction in E. coli was correlated with AHL production. As a working model in E. coli, we show that the induction responses of lambda with AHL remained unaffected when recA was deleted, suggesting that this mechanism does not involve an SOS response. In the same lambda lysogen we also demonstrated that sdiA, the AHL receptor, and rcsA, a positive transcriptional regulator of exopolysaccharide synthesis, are involved in the AHL-mediated induction process. These findings relate viral reproduction to chemical signals associated with high host cell abundance, suggesting an alternative paradigm for prophage induction.


Assuntos
Acil-Butirolactonas/farmacologia , Bactérias/virologia , Bacteriófagos/efeitos dos fármacos , Bacteriófagos/crescimento & desenvolvimento , Ativação Viral , Bactérias/classificação , Bactérias/genética , Proteínas de Bactérias/metabolismo , Bacteriófago lambda/efeitos dos fármacos , Bacteriófago lambda/crescimento & desenvolvimento , Escherichia coli/genética , Escherichia coli/fisiologia , Escherichia coli/virologia , Proteínas de Escherichia coli/metabolismo , Lisogenia , Mutação/genética , Pseudomonas aeruginosa/fisiologia , Pseudomonas aeruginosa/virologia , Microbiologia do Solo , Transativadores/metabolismo , Cultura de Vírus , Microbiologia da Água
4.
Appl Environ Microbiol ; 74(2): 495-502, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17993550

RESUMO

Bacteriophages are very abundant in the biosphere, and viral infection is believed to affect the activity and genetic diversity of bacterial communities in aquatic environments. Lysogenic conversion, for example, can improve host fitness and lead to phage-mediated horizontal gene transfer. However, little is known about lysogeny and transduction in the soil environment. In this study we employed atrazine-impregnated Bio-Sep beads (a cell immobilization matrix) to sample active microbiota from soils with prior pesticide exposure history. Once recovered from soil, the bead communities were induced with mitomycin C (MC), and viral and bacterial abundances were determined to evaluate the incidence of inducible prophage in soil bacteria. The inducible fraction calculated within bead communities was high (ca. 85%) relative to other studies in aquatic and sedimentary environments. Moreover, the bacterial genes encoding 16S rRNA and trzN, a chlorohydrolase gene responsible for dehalogenation of atrazine, were detected by PCR in the viral DNA fraction purified from MC-induced bead communities. A diverse collection of actinobacterial 16S rRNA gene sequences occurred within the viral DNA fraction of induced, water-equilibrated beads. Similar results were observed in induced atrazine-equilibrated beads, where 77% of the cloned sequences were derived from actinobacterial lineages. Heterogeneous 16S rRNA gene sequences consisting of fragments from two different taxa were detected in the clone libraries. The results suggest that lysogeny is a prevalent reproductive strategy among soil bacteriophages and that the potential for horizontal gene transfer via transduction is significant in soil microbial communities.


Assuntos
Bactérias/genética , Proteínas de Bactérias/genética , Bacteriófagos/genética , DNA Viral/genética , Lisogenia/genética , RNA Ribossômico 16S/genética , Actinomycetales/genética , Atrazina/farmacologia , Bactérias/ultraestrutura , Bactérias/virologia , Bacteriófagos/crescimento & desenvolvimento , Bacteriófagos/ultraestrutura , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Transferência Genética Horizontal , Microscopia Eletrônica de Transmissão , Mitomicina/farmacologia , Reação em Cadeia da Polimerase , Poliestirenos , Microbiologia do Solo
5.
FEMS Microbiol Ecol ; 91(7)2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26149131

RESUMO

Viruses are highly abundant in soils with their numbers exceeding those of cooccurring bacterial cells by 10- to over 1000-fold. Water and organic matter content influence the magnitude of the viral-to-bacterial ratio in soils; thus, ecosystem type and land use shape interactions between viral and host microbial communities in soils. Less understood are the shorter term interactions between viral and host communities that ultimately maintain the large viral standing stock within soils. This study examined short-term dynamics of viral and bacterial communities in soils to determine whether the growth of soil bacterial communities results in the production of soil viruses, and if viral community responses occur within specific populations. In microcosms amended with different carbon sources, increases in viral abundance (VA) accompanied increases in bacterial abundance (BA) and bacterial respiration rate (BRR). The timing and intensity of increases in BA, VA and BRR were different across C sources suggesting differences in the predominant mode of viral replication within growth-stimulated bacterial populations. Moreover, compositional changes occurred in soil bacterial and viral communities indicating that new viral production arose from a subset of host populations. To our knowledge, these are the first observations of soil viral populations responding to short-term changes in soil bacterial communities.


Assuntos
Bactérias/crescimento & desenvolvimento , Bactérias/virologia , Bacteriófagos/crescimento & desenvolvimento , Microbiologia do Solo , Carbono , Ecossistema , Solo , Poluentes do Solo , Replicação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA