Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38187646

RESUMO

Continuously growing teeth are an important innovation in mammalian evolution, yet genetic regulation of continuous growth by stem cells remains incompletely understood. Dental stem cells responsible for tooth crown growth are lost at the onset of tooth root formation. Genetic signaling that initiates this loss is difficult to study with the ever-growing incisor and rooted molars of mice, the most common mammalian dental model species, because signals for root formation overlap with signals that pattern tooth size and shape (i.e., cusp patterns). Different species of voles (Cricetidae, Rodentia, Glires) have evolved rooted and unrooted molars that have similar size and shape, providing alternative models for studying roots. We assembled a de novo genome of Myodes glareolus, a vole with high-crowned, rooted molars, and performed genomic and transcriptomic analyses in a broad phylogenetic context of Glires (rodents and lagomorphs) to assess differential selection and evolution in tooth forming genes. We identified 15 dental genes with changing synteny relationships and six dental genes undergoing positive selection across Glires, two of which were undergoing positive selection in species with unrooted molars, Dspp and Aqp1. Decreased expression of both genes in prairie voles with unrooted molars compared to bank voles supports the presence of positive selection and may underlie differences in root formation. Bulk transcriptomics analyses of embryonic molar development in bank voles also demonstrated conserved patterns of dental gene expression compared to mice, with species-specific variation likely related to developmental timing and morphological differences between mouse and vole molars. Our results support ongoing evolution of dental genes across Glires, revealing the complex evolutionary background of convergent evolution for ever-growing molars.

2.
iScience ; 26(5): 106686, 2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37216114

RESUMO

Urinary extracellular vesicles (uEV) are a largely unexplored source of kidney-derived mRNAs with potential to serve as a liquid kidney biopsy. We assessed ∼200 uEV mRNA samples from clinical studies by genome-wide sequencing to discover mechanisms and candidate biomarkers of diabetic kidney disease (DKD) in Type 1 diabetes (T1D) with replication in Type 1 and 2 diabetes. Sequencing reproducibly showed >10,000 mRNAs with similarity to kidney transcriptome. T1D DKD groups showed 13 upregulated genes prevalently expressed in proximal tubules, correlated with hyperglycemia and involved in cellular/oxidative stress homeostasis. We used six of them (GPX3, NOX4, MSRB, MSRA, HRSP12, and CRYAB) to construct a transcriptional "stress score" that reflected long-term decline of kidney function and could even identify normoalbuminuric individuals showing early decline. We thus provide workflow and web resource for studying uEV transcriptomes in clinical urine samples and stress-linked DKD markers as potential early non-invasive biomarkers or drug targets.

3.
Database (Oxford) ; 2010: baq022, 2010 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-20843867

RESUMO

The Indian Genome Variation Consortium (IGVC) project, an initiative of the Council for Scientific and Industrial Research, has been the first large-scale comprehensive study of the Indian population. One of the major aims of the project is to study and catalog the variations in nearly thousand candidate genes related to diseases and drug response for predictive marker discovery, founder identification and also to address questions related to ethnic diversity, migrations, extent and relatedness with other world population. The Phase I of the project aimed at providing a set of reference populations that would represent the entire genetic spectrum of India in terms of language, ethnicity and geography and Phase II in providing variation data on candidate genes and genome wide neutral markers on these reference set of populations. We report here development of the IGVBrowser that provides allele and genotype frequency data generated in the IGVC project. The database harbors 4229 SNPs from more than 900 candidate genes in contrasting Indian populations. Analysis shows that most of the markers are from genic regions. Further, a large fraction of genes are implicated in cardiovascular, metabolic, cancer and immune system-related diseases. Thus, the IGVC data provide a basal level variation data in Indian population to study genetic diseases and pharmacology. Additionally, it also houses data on ∼50,000 (Affy 50 K array) genome wide neutral markers in these reference populations. In IGVBrowser one can analyze and compare genomic variations in Indian population with those reported in HapMap along with annotation information from various primary data sources. Database URL: http://igvbrowser.igib.res.in.


Assuntos
Bases de Dados Genéticas , Genética Populacional , Internet/instrumentação , Interface Usuário-Computador , Estudos de Associação Genética , Genoma Humano , Humanos , Índia , Polimorfismo de Nucleotídeo Único
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA