Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev Lett ; 130(19): 198201, 2023 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-37243654

RESUMO

Glasses obtained from vapor deposition on a cold substrate have superior thermodynamic and kinetic stability with respect to ordinary glasses. Here we perform molecular dynamics simulations of vapor deposition of a model glassformer and investigate the origin of its high stability compared to that of ordinary glasses. We find that the vapor deposited glass is characterized by locally favored structures (LFSs) whose occurrence correlates with its stability, reaching a maximum at the optimal deposition temperature. The formation of LFSs is enhanced near the free surface, hence supporting the idea that the stability of vapor deposited glasses is connected to the relaxation dynamics at the surface.

2.
PLoS Comput Biol ; 18(1): e1009394, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35025883

RESUMO

Collective behaviour in living systems is observed across many scales, from bacteria to insects, to fish shoals. Zebrafish have emerged as a model system amenable to laboratory study. Here we report a three-dimensional study of the collective dynamics of fifty zebrafish. We observed the emergence of collective behaviour changing between ordered to randomised, upon adaptation to new environmental conditions. We quantify the spatial and temporal correlation functions of the fish and identify two length scales, the persistence length and the nearest neighbour distance, that capture the essence of the behavioural changes. The ratio of the two length scales correlates robustly with the polarisation of collective motion that we explain with a reductionist model of self-propelled particles with alignment interactions.


Assuntos
Comportamento Animal/fisiologia , Modelos Biológicos , Comportamento Espacial/fisiologia , Peixe-Zebra/fisiologia , Animais , Biologia Computacional , Imageamento Tridimensional , Natação/fisiologia
3.
Soft Matter ; 19(38): 7412-7428, 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37743690

RESUMO

"Sticky" spheres with a short-ranged attraction are a basic model of a wide range of materials from the atomic to the granular length scale. Among the complex phenomena exhibited by sticky spheres is the formation of far-from-equilibrium dynamically arrested networks which comprise "strands" of densely packed particles. The aging and failure of such gels under load is a remarkably challenging problem, given the simplicity of the model, as it involves multiple length- and time-scales, making a single approach ineffective. Here we tackle this challenge by addressing the failure of a single strand with a combination of methods. We study the mechanical response of a single strand of a model gel-former to deformation, both numerically and analytically. Under elongation, the strand breaks by a necking instability. We analyse this behaviour at three different length scales: a rheological continuum model of the whole strand; a microscopic analysis of the particle structure and dynamics; and the local stress tensor. Combining these different approaches gives a coherent picture of the necking and failure. The strand has an amorphous local structure and has large residual stresses from its initialisation. We find that neck formation is associated with increased plastic flow, a reduction in the stability of the local structure, and a reduction in the residual stresses; this indicates that the system loses its solid character and starts to behave more like a viscous fluid. These results will inform the development of more detailed models that incorporate the heterogeneous network structure of particulate gels.

4.
Soft Matter ; 19(9): 1695-1704, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36779972

RESUMO

Self-organisation is the spontaneous emergence of spatio-temporal structures and patterns from the interaction of smaller individual units. Examples are found across many scales in very different systems and scientific disciplines, from physics, materials science and robotics to biology, geophysics and astronomy. Recent research has highlighted how self-organisation can be both mediated and controlled by confinement. Confinement is an action over a system that limits its units' translational and rotational degrees of freedom, thus also influencing the system's phase space probability density; it can function as either a catalyst or inhibitor of self-organisation. Confinement can then become a means to actively steer the emergence or suppression of collective phenomena in space and time. Here, to provide a common framework and perspective for future research, we examine the role of confinement in the self-organisation of soft-matter systems and identify overarching scientific challenges that need to be addressed to harness its full scientific and technological potential in soft matter and related fields. By drawing analogies with other disciplines, this framework will accelerate a common deeper understanding of self-organisation and trigger the development of innovative strategies to steer it using confinement, with impact on, e.g., the design of smarter materials, tissue engineering for biomedicine and in guiding active matter.

5.
J Chem Phys ; 158(10): 104907, 2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36922118

RESUMO

The transport of active particles may occur in complex environments, in which it emerges from the interplay between the mobility of the active components and the quenched disorder of the environment. Here, we explore the structural and dynamical properties of active Brownian particles (ABPs) in random environments composed of fixed obstacles in three dimensions. We consider different arrangements of the obstacles. In particular, we consider two particular situations corresponding to experimentally realizable settings. First, we model pinning particles in (non-overlapping) random positions and, second, in a percolating gel structure and provide an extensive characterization of the structure and dynamics of ABPs in these complex environments. We find that the confinement increases the heterogeneity of the dynamics, with new populations of absorbed and localized particles appearing close to the obstacles. This heterogeneity has a profound impact on the motility induced phase separation exhibited by the particles at high activity, ranging from nucleation and growth in random disorder to a complex phase separation in porous environments.

6.
Proc Natl Acad Sci U S A ; 117(7): 3415-3420, 2020 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-32005711

RESUMO

Spinodal demixing into two phases having very different viscosities leads to viscoelastic networks-i.e., gels-usually as a result of attractive particle interactions. Here, however, we demonstrate demixing in a colloidal system of polydisperse, rod-like clay particles that is driven by particle repulsions instead. One of the phases is a nematic liquid crystal with a highly anisotropic viscosity, allowing flow along the director, but suppressing it in other directions. This phase coexists with a dilute isotropic phase. Real-space analysis and molecular-dynamics simulations both reveal a long-lived network structure that is locally anisotropic, yet macroscopically isotropic. We show that our system exhibits the characteristics of colloidal gelation, leading to nonsticky gels.

7.
Phys Rev Lett ; 129(14): 145501, 2022 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-36240416

RESUMO

It is widely believed that the emergence of slow glassy dynamics is encoded in a material's microstructure. First-principles theory [mode-coupling theory (MCT)] is able to predict the dramatic slowdown of the dynamics from only static two-point correlations as input, yet it cannot capture all of the observed dynamical behavior. Here we go beyond two-point spatial correlation functions by extending MCT systematically to include higher-order static and dynamic correlations. We demonstrate that only adding the static triplet direct correlations already qualitatively changes the predicted glass-transition diagram of binary hard spheres and silica. Moreover, we find a nontrivial competition between static triplet correlations that work to stabilize the glass state and dynamic higher-order correlations that destabilize it for both materials. We conclude that the conventionally neglected static triplet direct correlations as well as higher-order dynamic correlations are, in fact, non-negligible in both fragile and strong glassformers.

8.
J Chem Phys ; 156(21): 214907, 2022 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-35676121

RESUMO

Colloidal dispersions are prized as model systems to understand the basic properties of materials and are central to a wide range of industries from cosmetics to foods to agrichemicals. Among the key developments in using colloids to address challenges in condensed matter is to resolve the particle coordinates in 3D, allowing a level of analysis usually only possible in computer simulations. However, in amorphous materials, relating mechanical properties to microscopic structure remains problematic. This makes it rather hard to understand, for example, mechanical failure. Here, we address this challenge by studying the contacts and the forces between particles as well as their positions. To do so, we use a colloidal model system (an emulsion) in which the interparticle forces and local stress can be linked to the microscopic structure. We demonstrate the potential of our method to reveal insights into the failure mechanisms of soft amorphous solids by determining local stress in a colloidal gel. In particular, we identify "force chains" of load-bearing droplets and local stress anisotropy and investigate their connection with locally rigid packings of the droplets.


Assuntos
Coloides , Fenômenos Mecânicos , Anisotropia , Coloides/química , Simulação por Computador , Géis
9.
J Chem Phys ; 156(18): 184902, 2022 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-35568558

RESUMO

Colloids may be treated as "big atoms" so that they are good models for atomic and molecular systems. Colloidal hard disks are, therefore, good models for 2d materials, and although their phase behavior is well characterized, rheology has received relatively little attention. Here, we exploit a novel, particle-resolved, experimental setup and complementary computer simulations to measure the shear rheology of quasi-hard-disk colloids in extreme confinement. In particular, we confine quasi-2d hard disks in a circular "corral" comprised of 27 particles held in optical traps. Confinement and shear suppress hexagonal ordering that would occur in the bulk and create a layered fluid. We measure the rheology of our system by balancing drag and driving forces on each layer. Given the extreme confinement, it is remarkable that our system exhibits rheological behavior very similar to unconfined 2d and 3d hard particle systems, characterized by a dynamic yield stress and shear-thinning of comparable magnitude. By quantifying particle motion perpendicular to shear, we show that particles become more tightly confined to their layers with no concomitant increase in density upon increasing the shear rate. Shear thinning is, therefore, a consequence of a reduction in dissipation due to weakening in interactions between layers as the shear rate increases. We reproduce our experiments with Brownian dynamics simulations with Hydrodynamic Interactions (HI) included at the level of the Rotne-Prager tensor. That the inclusion of HI is necessary to reproduce our experiments is evidence of their importance in transmission of momentum through the system.

10.
Soft Matter ; 17(38): 8662-8677, 2021 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-34515711

RESUMO

We study in this paper the possible existence of Roskilde-simple liquids and their isomorphs in a rough-wall nanoconfinement. Isomorphs are curves in the thermodynamic phase diagram along which structure and dynamics are invariant in suitable nondimensionalized units. Two model liquids using molecular dynamics computer simulations are considered: the single-component Lennard-Jones (LJ) liquid and the Kob-Andersen binary LJ mixture, both of which in the bulk phases are known to have good isomorphs. Nanoconfinement is implemented by adopting a slit-pore geometry with fcc crystalline walls; this implies inhomogenous density profiles both parallel and perpendicular to the confining walls. Despite this fact and consistent with an earlier study [Ingebrigtsen et al., Phys. Rev. Lett., 2013, 111, 235901] we find that these two nanoconfined liquids have isomorphs to a good approximation. More specifically, we show good invariance along the isomorphs of inhomogenous density profiles, mean-square displacements, and higher-order structures probed using the topological cluster classification algorithm. Our study thus provides an alternative framework for understanding nanoconfined liquids.

11.
Soft Matter ; 17(28): 6873-6883, 2021 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-34231559

RESUMO

Natural and artificial proteins with designer properties and functionalities offer unparalleled opportunity for functional nanoarchitectures formed through self-assembly. However, to exploit this potential we need to design the system such that assembly results in desired architecture forms while avoiding denaturation and therefore retaining protein functionality. Here we address this challenge with a model system of fluorescent proteins. By manipulating self-assembly using techniques inspired by soft matter where interactions between the components are controlled to yield the desired structure, we have developed a methodology to assemble networks of proteins of one species which we can decorate with another, whose coverage we can tune. Consequently, the interfaces between domains of each component can also be tuned, with potential applications for example in energy - or electron - transfer. Our model system of eGFP and mCherry with tuneable interactions reveals control over domain sizes in the resulting networks.


Assuntos
Nanoestruturas , Proteínas
12.
Eur Phys J E Soft Matter ; 44(9): 121, 2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-34580776

RESUMO

We explore crystallisation and polymorph selection in active Brownian particles with numerical simulation. In agreement with previous work (Wysocki et al. in Europhys Lett 105:48004, 2014), we find that crystallisation is suppressed by activity and occurs at higher densities with increasing Péclet number ([Formula: see text]). While the nucleation rate decreases with increasing activity, the crystal growth rate increases due to the accelerated dynamics in the melt. As a result of this competition, we observe the transition from a nucleation and growth regime at high [Formula: see text] to "spinodal nucleation" at low [Formula: see text]. Unlike the case of passive hard spheres, where preference for FCC over HCP polymorphs is weak, activity causes the annealing of HCP stacking faults, thus strongly favouring the FCC symmetry at high [Formula: see text]. When freezing occurs more slowly, in the nucleation and growth regime, this tendency is much reduced and we see a trend towards the passive case of little preference for either polymorph.

13.
J Chem Phys ; 155(11): 114901, 2021 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-34551522

RESUMO

While proteins have been treated as particles with a spherically symmetric interaction, of course in reality, the situation is rather more complex. A simple step toward higher complexity is to treat the proteins as non-spherical particles and that is the approach we pursue here. We investigate the phase behavior of the enhanced green fluorescent protein (eGFP) under the addition of a non-adsorbing polymer, polyethylene glycol. From small angle x-ray scattering, we infer that the eGFP undergoes dimerization and we treat the dimers as spherocylinders with aspect ratio L/D - 1 = 1.05. Despite the complex nature of the proteins, we find that the phase behavior is similar to that of hard spherocylinders with an ideal polymer depletant, exhibiting aggregation and, in a small region of the phase diagram, crystallization. By comparing our measurements of the onset of aggregation with predictions for hard colloids and ideal polymers [S. V. Savenko and M. Dijkstra, J. Chem. Phys. 124, 234902 (2006) and Lo Verso et al., Phys. Rev. E 73, 061407 (2006)], we find good agreement, which suggests that the behavior of the eGFP is consistent with that of hard spherocylinders and ideal polymers.


Assuntos
Coloides , Polímeros , Agregados Proteicos , Proteínas , Coloides/química , Cristalização , Polímeros/química , Proteínas/química
14.
J Chem Phys ; 153(9): 090901, 2020 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-32891096

RESUMO

We review recent developments in structural-dynamical phase transitions in trajectory space based on dynamic facilitation theory. An open question is how the dynamic facilitation perspective on the glass transition may be reconciled with thermodynamic theories that posit collective reorganization accompanied by a growing static length scale and, eventually, a vanishing configurational entropy. In contrast, dynamic facilitation theory invokes a dynamical phase transition between an active phase (close to the normal liquid) and an inactive phase, which is glassy and whose order parameter is either a time-averaged dynamic or structural quantity. In particular, the dynamical phase transition in systems with non-trivial thermodynamics manifests signatures of a lower critical point that lies between the mode-coupling crossover and the putative Kauzmann temperature, at which a thermodynamic phase transition to an ideal glass state would occur. We review these findings and discuss such criticality in the context of the low-temperature decrease in configurational entropy predicted by thermodynamic theories of the glass transition.

15.
J Chem Phys ; 152(7): 074503, 2020 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-32087631

RESUMO

A quantitative understanding of the evaporative drying kinetics and nucleation rates of aqueous based aerosol droplets is important for a wide range of applications, from atmospheric aerosols to industrial processes such as spray drying. Here, we introduce a numerical model for interpreting measurements of the evaporation rate and phase change of drying free droplets made using a single particle approach. We explore the evaporation of aqueous sodium chloride and sodium nitrate solution droplets. Although the chloride salt is observed to reproducibly crystallize at all drying rates, the nitrate salt solution can lose virtually all of its water content without crystallizing. The latter phenomenon has implications for our understanding of the competition between the drying rate and nucleation kinetics in these two systems. The nucleation model is used in combination with the measurements of crystallization events to infer nucleation rates at varying equilibrium state points, showing that classical nucleation theory provides a good description of the crystallization of the chloride salt but not the nitrate salt solution droplets. The reasons for this difference are considered.

16.
Phys Rev Lett ; 122(6): 068004, 2019 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-30822057

RESUMO

We model the thermodynamics of local structures within the hard sphere liquid at arbitrary volume fractions through the morphometric calculation of n-body correlations. We calculate absolute free energies of local geometric motifs in excellent quantitative agreement with molecular dynamics simulations across the liquid and supercooled liquid regimes. We find a bimodality in the density library of states where fivefold symmetric structures appear lower in free energy than fourfold symmetric structures and from a single reaction path predict a dynamical barrier which scales linearly in the compressibility factor. The method provides a new route to assess changes in the free energy landscape at volume fractions dynamically inaccessible to conventional techniques.

17.
Soft Matter ; 14(20): 4020-4028, 2018 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-29767188

RESUMO

We review efforts to realise so-called mermaid (or short-ranged attraction/long ranged repulsion) interactions in 3d real space. The repulsive and attractive contributions to these interactions in charged colloids and colloid-polymer mixtures, may be accurately realised, by comparing particle-resolved studies with colloids to computer simulation. However, when we review work where these interactions have been combined, despite early indications of behaviour consistent with predictions, closer analysis reveals that in the non-aqueous systems used for particle-resolved studies, the idea of summing the attractive and repulsive components leads to wild deviations with experiment. We suggest that the origin lies in the weak ion dissociation in these systems with low dielectric constant solvents. Ultimately this leads even to non-centro-symmetric interactions and a new level of complexity in these systems.

18.
Soft Matter ; 14(27): 5554-5564, 2018 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-29809218

RESUMO

We combine experiments and simulations to study the link between criticality and gelation in sticky spheres. We employ confocal microscopy to image colloid-polymer mixtures and Monte Carlo simulations of the square-well (SW) potential as a reference model. To this end, we map our experimental samples onto the SW model. We find an excellent structural agreement between experiments and simulations, both for locally favored structures at the single particle level and large-scale fluctuations at criticality. We follow in detail the rapid structural change in the critical fluid when approaching the gas-liquid binodal and highlight the role of critical density fluctuations for this structural crossover. Our results link the arrested spinodal decomposition to long-lived energetically favored structures, which grow even away from the binodal due to the critical scaling of the bulk correlation length and static susceptibility.

19.
Soft Matter ; 14(41): 8344-8351, 2018 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-30298898

RESUMO

We propose a novel microfluidic "opposed-flow" geometry in which the continuous fluid phase is fed into a junction in a direction opposite to the dispersed phase. This pulls out the dispersed phase into a micron-sized jet, which decays into micron-sized droplets. As the driving pressure is tuned to a critical value, the jet radius vanishes as a power law down to sizes below 1 µm. By contrast, the conventional "coflowing" junction leads to a first order jetting transition, in which the jet disappears at a finite radius of several µm, to give way to a "dripping" state, resulting in much larger droplets. We demonstrate the effectiveness of our method by producing the first microfluidic silicone oil emulsions with a sub micron particle radius, and utilize these droplets to produce colloidal clusters.

20.
Eur Phys J E Soft Matter ; 41(4): 54, 2018 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-29700690

RESUMO

In trajectory space, dynamical heterogeneities in glass-forming liquids correspond to the emergence of a dynamical phase transition between an active phase poor in local structure and an inactive phase which is rich in local structure. We support this scenario with the study of a model additive mixture of Lennard-Jones particles, quantifying how the choice of the relevant structural and dynamical observable affects the transition in trajectory space. We find that the low mobility, structure-rich phase is dominated by icosahedral order. Applying a non-equilibrium rheological protocol, we connect local order to the emergence of mechanical rigidity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA