Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 589(7841): 310-314, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33268896

RESUMO

Photosynthetic reaction centres harvest the energy content of sunlight by transporting electrons across an energy-transducing biological membrane. Here we use time-resolved serial femtosecond crystallography1 using an X-ray free-electron laser2 to observe light-induced structural changes in the photosynthetic reaction centre of Blastochloris viridis on a timescale of picoseconds. Structural perturbations first occur at the special pair of chlorophyll molecules of the photosynthetic reaction centre that are photo-oxidized by light. Electron transfer to the menaquinone acceptor on the opposite side of the membrane induces a movement of this cofactor together with lower amplitude protein rearrangements. These observations reveal how proteins use conformational dynamics to stabilize the charge-separation steps of electron-transfer reactions.


Assuntos
Complexo de Proteínas do Centro de Reação Fotossintética/química , Complexo de Proteínas do Centro de Reação Fotossintética/metabolismo , Bacterioclorofilas/metabolismo , Sítios de Ligação/efeitos dos fármacos , Clorofila/metabolismo , Clorofila/efeitos da radiação , Cristalografia , Citoplasma/metabolismo , Transporte de Elétrons/efeitos dos fármacos , Elétrons , Hyphomicrobiaceae/enzimologia , Hyphomicrobiaceae/metabolismo , Lasers , Modelos Moleculares , Oxirredução/efeitos da radiação , Feofitinas/metabolismo , Complexo de Proteínas do Centro de Reação Fotossintética/efeitos da radiação , Prótons , Ubiquinona/análogos & derivados , Ubiquinona/metabolismo , Vitamina K 2/metabolismo
2.
Proc Natl Acad Sci U S A ; 121(12): e2308478121, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38489389

RESUMO

The marine cyanobacterium Prochlorococcus is a main contributor to global photosynthesis, whilst being limited by iron availability. Cyanobacterial genomes generally encode two different types of FutA iron-binding proteins: periplasmic FutA2 ABC transporter subunits bind Fe(III), while cytosolic FutA1 binds Fe(II). Owing to their small size and their economized genome Prochlorococcus ecotypes typically possess a single futA gene. How the encoded FutA protein might bind different Fe oxidation states was previously unknown. Here, we use structural biology techniques at room temperature to probe the dynamic behavior of FutA. Neutron diffraction confirmed four negatively charged tyrosinates, that together with a neutral water molecule coordinate iron in trigonal bipyramidal geometry. Positioning of the positively charged Arg103 side chain in the second coordination shell yields an overall charge-neutral Fe(III) binding state in structures determined by neutron diffraction and serial femtosecond crystallography. Conventional rotation X-ray crystallography using a home source revealed X-ray-induced photoreduction of the iron center with observation of the Fe(II) binding state; here, an additional positioning of the Arg203 side chain in the second coordination shell maintained an overall charge neutral Fe(II) binding site. Dose series using serial synchrotron crystallography and an XFEL X-ray pump-probe approach capture the transition between Fe(III) and Fe(II) states, revealing how Arg203 operates as a switch to accommodate the different iron oxidation states. This switching ability of the Prochlorococcus FutA protein may reflect ecological adaptation by genome streamlining and loss of specialized FutA proteins.


Assuntos
Compostos Férricos , Prochlorococcus , Compostos Férricos/química , Proteínas de Ligação ao Ferro/metabolismo , Prochlorococcus/metabolismo , Ferro/metabolismo , Oxirredução , Transferrina/metabolismo , Água/química , Compostos Ferrosos/química , Cristalografia por Raios X
3.
Nat Methods ; 20(4): 541-545, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36973546

RESUMO

We report the evolution of mScarlet3, a cysteine-free monomeric red fluorescent protein with fast and complete maturation, as well as record brightness, quantum yield (75%) and fluorescence lifetime (4.0 ns). The mScarlet3 crystal structure reveals a barrel rigidified at one of its heads by a large hydrophobic patch of internal residues. mScarlet3 behaves well as a fusion tag, displays no apparent cytotoxicity and it surpasses existing red fluorescent proteins as a Förster resonance energy transfer acceptor and as a reporter in transient expression systems.


Assuntos
Transferência Ressonante de Energia de Fluorescência , Humanos , Células HeLa , Proteínas Luminescentes/metabolismo , Proteína Vermelha Fluorescente
4.
Inorg Chem ; 63(24): 11063-11078, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38814816

RESUMO

In this paper, we employed a multidisciplinary approach, combining experimental techniques and density functional theory (DFT) calculations to elucidate key features of the copper coordination environment of the bacterial lytic polysaccharide monooxygenase (LPMO) from Serratia marcescens (SmAA10). The structure of the holo-enzyme was successfully obtained by X-ray crystallography. We then determined the copper(II) binding affinity using competing ligands and observed that the affinity of the histidine brace ligands for copper is significantly higher than previously described. UV-vis, advanced electron paramagnetic resonance (EPR), and X-ray absorption spectroscopy (XAS) techniques, including high-energy resolution fluorescence detected (HERFD) XAS, were further used to gain insight into the copper environment in both the Cu(II) and Cu(I) redox states. The experimental data were successfully rationalized by DFT models, offering valuable information on the electronic structure and coordination geometry of the copper center. Finally, the Cu(II)/Cu(I) redox potential was determined using two different methods at ca. 350 mV vs NHE and rationalized by DFT calculations. This integrated approach not only advances our knowledge of the active site properties of SmAA10 but also establishes a robust framework for future studies of similar enzymatic systems.


Assuntos
Domínio Catalítico , Cobre , Teoria da Densidade Funcional , Oxigenases de Função Mista , Serratia marcescens , Cobre/química , Cobre/metabolismo , Serratia marcescens/enzimologia , Oxigenases de Função Mista/metabolismo , Oxigenases de Função Mista/química , Cristalografia por Raios X , Modelos Moleculares , Polissacarídeos/química , Polissacarídeos/metabolismo , Oxirredução
5.
PLoS Biol ; 18(11): e3000936, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33137097

RESUMO

Using mRNA sequencing and de novo transcriptome assembly, we identified, cloned, and characterized 9 previously undiscovered fluorescent protein (FP) homologs from Aequorea victoria and a related Aequorea species, with most sequences highly divergent from A. victoria green fluorescent protein (avGFP). Among these FPs are the brightest green fluorescent protein (GFP) homolog yet characterized and a reversibly photochromic FP that responds to UV and blue light. Beyond green emitters, Aequorea species express purple- and blue-pigmented chromoproteins (CPs) with absorbances ranging from green to far-red, including 2 that are photoconvertible. X-ray crystallography revealed that Aequorea CPs contain a chemically novel chromophore with an unexpected crosslink to the main polypeptide chain. Because of the unique attributes of several of these newly discovered FPs, we expect that Aequorea will, once again, give rise to an entirely new generation of useful probes for bioimaging and biosensing.


Assuntos
Hidrozoários/genética , Hidrozoários/metabolismo , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Animais , Técnicas Biossensoriais , Cor , Cristalografia por Raios X , Proteínas de Fluorescência Verde/química , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Hidrozoários/química , Proteínas Luminescentes/química , Modelos Moleculares , Imagem Óptica , Filogenia , Eletricidade Estática
6.
Photochem Photobiol Sci ; 21(9): 1545-1555, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35041199

RESUMO

miniSOG, developed as the first fully genetically encoded singlet oxygen photosensitiser, has found various applications in cell imaging and functional studies. Yet, miniSOG has suboptimal properties, including a low yield of singlet oxygen generation, which can nevertheless be improved tenfold upon blue light irradiation. In a previous study, we showed that this improvement was due to the photolysis of the miniSOG chromophore, flavin mononucleotide (FMN), into lumichrome, with concomitant removal of the phosphoribityl tail, thereby improving oxygen access to the alloxazine ring. We thus reasoned that a chromophore with a shorter tail would readily improve the photosensitizing properties of miniSOG. In this work, we show that the replacement of FMN by riboflavin (RF), which lacks the bulky phosphate group, significantly improves the singlet oxygen quantum yield (ΦΔ). We then proceeded to mutagenize the residues stabilizing the phosphate group of FMN to alter the chromophore specificity. We identified miniSOG-R57Q as a flavoprotein that selectively binds RF in cellulo, with a modestly improved ΦΔ. Our results show that it is possible to modify the flavin specificity of a given flavoprotein, thus providing a new option to tune its photophysical properties, including those leading to photosensitization. We also determined the structure of miniSOG-Q103L, a mutant with a much increased ΦΔ, which allowed us to postulate the existence of another access channel to FMN for molecular oxygen.


Assuntos
Mononucleotídeo de Flavina , Oxigênio Singlete , Mononucleotídeo de Flavina/química , Flavoproteínas/química , Oxigênio/química , Fosfatos , Riboflavina , Oxigênio Singlete/química
7.
Proc Natl Acad Sci U S A ; 115(10): E2229-E2237, 2018 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-29463722

RESUMO

[NiFe] hydrogenases catalyze the reversible splitting of H2 into protons and electrons at a deeply buried active site. The catalytic center can be accessed by gas molecules through a hydrophobic tunnel network. While most [NiFe] hydrogenases are inactivated by O2, a small subgroup, including the membrane-bound [NiFe] hydrogenase (MBH) of Ralstonia eutropha, is able to overcome aerobic inactivation by catalytic reduction of O2 to water. This O2 tolerance relies on a special [4Fe3S] cluster that is capable of releasing two electrons upon O2 attack. Here, the O2 accessibility of the MBH gas tunnel network has been probed experimentally using a "soak-and-freeze" derivatization method, accompanied by protein X-ray crystallography and computational studies. This combined approach revealed several sites of O2 molecules within a hydrophobic tunnel network leading, via two tunnel entrances, to the catalytic center of MBH. The corresponding site occupancies were related to the O2 concentrations used for MBH crystal derivatization. The examination of the O2-derivatized data furthermore uncovered two unexpected structural alterations at the [4Fe3S] cluster, which might be related to the O2 tolerance of the enzyme.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Membrana Celular/enzimologia , Cupriavidus necator/enzimologia , Hidrogenase/química , Hidrogenase/metabolismo , Oxigênio/metabolismo , Proteínas de Bactérias/genética , Sítios de Ligação , Domínio Catalítico , Membrana Celular/química , Membrana Celular/genética , Cristalografia por Raios X , Cupriavidus necator/química , Cupriavidus necator/genética , Hidrogenase/genética , Interações Hidrofóbicas e Hidrofílicas , Oxigênio/química
8.
Nat Methods ; 14(1): 53-56, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27869816

RESUMO

We report the engineering of mScarlet, a truly monomeric red fluorescent protein with record brightness, quantum yield (70%) and fluorescence lifetime (3.9 ns). We developed mScarlet starting with a consensus synthetic template and using improved spectroscopic screening techniques; mScarlet's crystal structure reveals a planar and rigidified chromophore. mScarlet outperforms existing red fluorescent proteins as a fusion tag, and it is especially useful as a Förster resonance energy transfer (FRET) acceptor in ratiometric imaging.


Assuntos
Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Transferência Ressonante de Energia de Fluorescência/métodos , Proteínas Luminescentes/metabolismo , Imagem Molecular/métodos , Engenharia de Proteínas/métodos , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/patologia , Sobrevivência Celular , Células HeLa , Humanos , Osteossarcoma/metabolismo , Osteossarcoma/patologia , Células Tumorais Cultivadas , Proteína Vermelha Fluorescente
9.
J Synchrotron Radiat ; 27(Pt 3): 844-851, 2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32381789

RESUMO

ID30A-3 (or MASSIF-3) is a mini-focus (beam size 18 µm × 14 µm) highly intense (2.0 × 1013 photons s-1), fixed-energy (12.81 keV) beamline for macromolecular crystallography (MX) experiments at the European Synchrotron Radiation Facility (ESRF). MASSIF-3 is one of two fixed-energy beamlines sited on the first branch of the canted undulator setup on the ESRF ID30 port and is equipped with a MD2 micro-diffractometer, a Flex HCD sample changer, and an Eiger X 4M fast hybrid photon-counting detector. MASSIF-3 is recommended for collecting diffraction data from single small crystals (≤15 µm in one dimension) or for experiments using serial methods. The end-station has been in full user operation since December 2014, and here its current characteristics and capabilities are described.

10.
Nat Chem Biol ; 13(3): 290-294, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28092359

RESUMO

Substrate channeling has emerged as a common mechanism for enzymatic intermediate transfer. A conspicuous gap in knowledge concerns the use of covalent lysine imines in the transfer of carbonyl-group-containing intermediates, despite their wideuse in enzymatic catalysis. Here we show how imine chemistry operates in the transfer of covalent intermediates in pyridoxal 5'-phosphate biosynthesis by the Arabidopsis thaliana enzyme Pdx1. An initial ribose 5-phosphate lysine imine is converted to the chromophoric I320 intermediate, simultaneously bound to two lysine residues and partially vacating the active site, which creates space for glyceraldehyde 3-phosphate to bind. Crystal structures show how substrate binding, catalysis and shuttling are coupled to conformational changes around strand ß6 of the Pdx1 (ßα)8-barrel. The dual-specificity active site and imine relay mechanism for migration of carbonyl intermediates provide elegant solutions to the challenge of coordinating a complex sequence of reactions that follow a path of over 20 Å between substrate- and product-binding sites.


Assuntos
Lisina/metabolismo , Vitamina B 6/biossíntese , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Carbono-Nitrogênio Liases , Lisina/química , Modelos Moleculares , Estrutura Molecular , Transferases de Grupos Nitrogenados/química , Transferases de Grupos Nitrogenados/metabolismo , Vitamina B 6/química
11.
Biochemistry ; 56(49): 6418-6422, 2017 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-29148725

RESUMO

ECFP, the first usable cyan fluorescent protein (CFP), was obtained by adapting the tyrosine-based chromophore environment in green fluorescent protein to that of a tryptophan-based one. This first-generation CFP was superseded by the popular Cerulean, CyPet, and SCFP3A that were engineered by rational and random mutagenesis, yet the latter CFPs still exhibit suboptimal properties of pH sensitivity and reversible photobleaching behavior. These flaws were serendipitously corrected in the third-generation CFP mTurquoise and its successors without an obvious rationale. We show here that the evolution process had unexpectedly remodeled the chromophore environment in second-generation CFPs so they would accommodate a different isomer, whose formation is favored by acidic pH or light irradiation and which emits fluorescence much less efficiently. Our results illustrate how fluorescent protein engineering based solely on fluorescence efficiency optimization may affect other photophysical or physicochemical parameters and provide novel insights into the rational evolution of fluorescent proteins with a tryptophan-based chromophore.


Assuntos
Proteínas de Fluorescência Verde/química , Cristalografia por Raios X , Fluorescência , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Concentração de Íons de Hidrogênio , Isomerismo , Modelos Moleculares , Conformação Proteica , Estabilidade Proteica , Triptofano/química , Triptofano/genética , Triptofano/metabolismo
12.
J Struct Biol ; 200(2): 124-127, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-29042242

RESUMO

Raman spectroscopy can probe the structure and conformations of specific chemical groups within proteins and may thus be used as a technique complementary to X-ray crystallography. This combined approach can be decisive in resolving ambiguities in the interpretation of enzymatic or X-ray induced processes. Here, we present an online Raman setup developed at the European Synchrotron that allows for interleaved Raman spectra acquisition and X-ray diffraction measurements with fast probe exchange and simple alignment while maintaining a high sensitivity over the entire spectral range. This device has been recently employed in the study of a covalent intermediate in the O2-dependent breakdown of uric acid by the cofactor-free enzyme urate oxidase and to monitor its decay induced by X-ray exposure.


Assuntos
Análise Espectral Raman/métodos , Urato Oxidase/metabolismo , Ácido Úrico/química , Cristalografia por Raios X/métodos , Conformação Molecular , Síncrotrons , Ácido Úrico/análogos & derivados , Difração de Raios X/métodos
13.
Biochemistry ; 55(31): 4263-74, 2016 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-27471775

RESUMO

Using X-ray crystallography, continuum electrostatic calculations, and molecular dynamics simulations, we have studied the structure, protonation behavior, and dynamics of the biliverdin chromophore and its molecular environment in a series of genetically engineered infrared fluorescent proteins (IFPs) based on the chromophore-binding domain of the Deinococcus radiodurans bacteriophytochrome. Our study suggests that the experimentally observed enhancement of fluorescent properties results from the improved rigidity and planarity of the biliverdin chromophore, in particular of the first two pyrrole rings neighboring the covalent linkage to the protein. We propose that the increases in the levels of both motion and bending of the chromophore out of planarity favor the decrease in fluorescence. The chromophore-binding pocket in some of the studied proteins, in particular the weakly fluorescent parent protein, is shown to be readily accessible to water molecules from the solvent. These waters entering the chromophore region form hydrogen bond networks that affect the otherwise planar conformation of the first three rings of the chromophore. On the basis of our simulations, the enhancement of fluorescence in IFPs can be achieved either by reducing the mobility of water molecules in the vicinity of the chromophore or by limiting the interactions of the nearby protein residues with the chromophore. Finally, simulations performed at both low and neutral pH values highlight differences in the dynamics of the chromophore and shed light on the mechanism of fluorescence loss at low pH.


Assuntos
Proteínas de Bactérias/química , Proteínas Luminescentes/química , Proteínas de Bactérias/genética , Biliverdina/química , Cristalografia por Raios X , Deinococcus/química , Deinococcus/genética , Fluorescência , Raios Infravermelhos , Proteínas Luminescentes/genética , Modelos Moleculares , Simulação de Dinâmica Molecular , Fitocromo/química , Engenharia de Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Eletricidade Estática
14.
Biochim Biophys Acta ; 1850(3): 536-53, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24918316

RESUMO

BACKGROUND: Bacteriorhodopsin (bR) is the simplest known light driven proton pump and has been heavily studied using structural methods: eighty four X-ray diffraction, six electron diffraction and three NMR structures of bR are deposited within the protein data bank. Twenty one X-ray structures report light induced structural changes and changes induced by mutation, changes in pH, thermal annealing or X-ray induced photo-reduction have also been examined. SCOPE OF REVIEW: We argue that light-induced structural changes that are replicated across several studies by independent research groups are those most likely to represent what is happening in reality. We present both internal distance matrix analyses that sort deposited bR structures into hierarchal trees, and difference Fourier analysis of deposited X-ray diffraction data. MAJOR CONCLUSIONS: An internal distance matrix analysis separates most wild-type bR structures according to their different crystal forms, indicating how the protein's structure is influenced by crystallization conditions. A similar analysis clusters eleven studies of illuminated bR crystals as one branch of a hierarchal tree with reproducible movements of the extracellular portion of helix C towards helix G, and of the cytoplasmic portion of helix F away from helices A, B and G. All crystallographic data deposited for illuminated crystals show negative difference density on a water molecule (Wat402) that forms H-bonds to the retinal Schiff Base and two aspartate residues (Asp85, Asp212) in the bR resting state. Other recurring difference density features indicated reproducible side-chain, backbone and water molecule displacements. X-ray induced radiation damage also disorders Wat402 but acts via cleaving the head-groups of Asp85 and Asp212. GENERAL SIGNIFICANCE: A remarkable level of agreement exists when deposited structures and crystallographic observations are viewed as a whole. From this agreement a unified picture of the structural mechanism of light-induced proton pumping by bR emerges. This article is part of a Special Issue entitled Structural biochemistry and biophysics of membrane proteins.


Assuntos
Bacteriorodopsinas/química , Luz , Conformação Proteica/efeitos da radiação , Estrutura Secundária de Proteína/efeitos da radiação , Bacteriorodopsinas/classificação , Bacteriorodopsinas/genética , Cristalografia por Raios X , Modelos Moleculares , Filogenia , Raios X
15.
J Biol Chem ; 289(27): 18782-92, 2014 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-24828494

RESUMO

Lytic polysaccharide monooxygenases (LPMOs) are a recently discovered class of enzymes that employ a copper-mediated, oxidative mechanism to cleave glycosidic bonds. The LPMO catalytic mechanism likely requires that molecular oxygen first binds to Cu(I), but the oxidation state in many reported LPMO structures is ambiguous, and the changes in the LPMO active site required to accommodate both oxidation states of copper have not been fully elucidated. Here, a diffraction data collection strategy minimizing the deposited x-ray dose was used to solve the crystal structure of a chitin-specific LPMO from Enterococcus faecalis (EfaCBM33A) in the Cu(II)-bound form. Subsequently, the crystalline protein was photoreduced in the x-ray beam, which revealed structural changes associated with the conversion from the initial Cu(II)-oxidized form with two coordinated water molecules, which adopts a trigonal bipyramidal geometry, to a reduced Cu(I) form in a T-shaped geometry with no coordinated water molecules. A comprehensive survey of Cu(II) and Cu(I) structures in the Cambridge Structural Database unambiguously shows that the geometries observed in the least and most reduced structures reflect binding of Cu(II) and Cu(I), respectively. Quantum mechanical calculations of the oxidized and reduced active sites reveal little change in the electronic structure of the active site measured by the active site partial charges. Together with a previous theoretical investigation of a fungal LPMO, this suggests significant functional plasticity in LPMO active sites. Overall, this study provides molecular snapshots along the reduction process to activate the LPMO catalytic machinery and provides a general method for solving LPMO structures in both copper oxidation states.


Assuntos
Cobre/metabolismo , Elétrons , Oxigenases de Função Mista/química , Oxigenases de Função Mista/metabolismo , Processos Fotoquímicos , Polissacarídeos/metabolismo , Domínio Catalítico , Bases de Dados de Proteínas , Enterococcus faecalis/enzimologia , Modelos Moleculares , Oxirredução , Oxigênio/metabolismo , Teoria Quântica , Raios X
16.
Acta Crystallogr D Biol Crystallogr ; 71(Pt 1): 15-26, 2015 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-25615856

RESUMO

The analysis of structural data obtained by X-ray crystallography benefits from information obtained from complementary techniques, especially as applied to the crystals themselves. As a consequence, optical spectroscopies in structural biology have become instrumental in assessing the relevance and context of many crystallographic results. Since the year 2000, it has been possible to record such data adjacent to, or directly on, the Structural Biology Group beamlines of the ESRF. A core laboratory featuring various spectrometers, named the Cryobench, is now in its third version and houses portable devices that can be directly mounted on beamlines. This paper reports the current status of the Cryobench, which is now located on the MAD beamline ID29 and is thus called the ID29S-Cryobench (where S stands for `spectroscopy'). It also reviews the diverse experiments that can be performed at the Cryobench, highlighting the various scientific questions that can be addressed.


Assuntos
Substâncias Macromoleculares/química , Espectrofotometria Ultravioleta/métodos , Análise Espectral Raman/métodos , Cor , DNA/química , Proteínas/química
17.
Angew Chem Int Ed Engl ; 53(50): 13710-4, 2014 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-25314114

RESUMO

Cofactor-free oxidases and oxygenases promote and control the reactivity of O2 with limited chemical tools at their disposal. Their mechanism of action is not completely understood and structural information is not available for any of the reaction intermediates. Near-atomic resolution crystallography supported by in crystallo Raman spectroscopy and QM/MM calculations showed unambiguously that the archetypical cofactor-free uricase catalyzes uric acid degradation via a C5(S)-(hydro)peroxide intermediate. Low X-ray doses break specifically the intermediate C5-OO(H) bond at 100 K, thus releasing O2 in situ, which is trapped above the substrate radical. The dose-dependent rate of bond rupture followed by combined crystallographic and Raman analysis indicates that ionizing radiation kick-starts both peroxide decomposition and its regeneration. Peroxidation can be explained by a mechanism in which the substrate radical recombines with superoxide transiently produced in the active site.


Assuntos
Oxirredutases/química , Oxigênio/química , Peróxidos/química , Catálise , Especificidade por Substrato
18.
Acta Crystallogr D Struct Biol ; 80(Pt 2): 60-79, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38265875

RESUMO

Over the last decade, the development of time-resolved serial crystallography (TR-SX) at X-ray free-electron lasers (XFELs) and synchrotrons has allowed researchers to study phenomena occurring in proteins on the femtosecond-to-minute timescale, taking advantage of many technical and methodological breakthroughs. Protein crystals of various sizes are presented to the X-ray beam in either a static or a moving medium. Photoactive proteins were naturally the initial systems to be studied in TR-SX experiments using pump-probe schemes, where the pump is a pulse of visible light. Other reaction initiations through small-molecule diffusion are gaining momentum. Here, selected examples of XFEL and synchrotron time-resolved crystallography studies will be used to highlight the specificities of the various instruments and methods with respect to time resolution, and are compared with cryo-trapping studies.


Assuntos
Proteínas , Síncrotrons , Cristalografia , Cristalografia por Raios X , Raios X , Proteínas/química , Lasers
19.
Acta Crystallogr D Struct Biol ; 80(Pt 1): 16-25, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38088897

RESUMO

The technique of time-resolved macromolecular crystallography (TR-MX) has recently been rejuvenated at synchrotrons, resulting in the design of dedicated beamlines. Using pump-probe schemes, this should make the mechanistic study of photoactive proteins and other suitable systems possible with time resolutions down to microseconds. In order to identify relevant time delays, time-resolved spectroscopic experiments directly performed on protein crystals are often desirable. To this end, an instrument has been built at the icOS Lab (in crystallo Optical Spectroscopy Laboratory) at the European Synchrotron Radiation Facility using reflective focusing objectives with a tuneable nanosecond laser as a pump and a microsecond xenon flash lamp as a probe, called the TR-icOS (time-resolved icOS) setup. Using this instrument, pump-probe spectra can rapidly be recorded from single crystals with time delays ranging from a few microseconds to seconds and beyond. This can be repeated at various laser pulse energies to track the potential presence of artefacts arising from two-photon absorption, which amounts to a power titration of a photoreaction. This approach has been applied to monitor the rise and decay of the M state in the photocycle of crystallized bacteriorhodopsin and showed that the photocycle is increasingly altered with laser pulses of peak fluence greater than 100 mJ cm-2, providing experimental laser and delay parameters for a successful TR-MX experiment.


Assuntos
Proteínas , Síncrotrons , Análise Espectral , Proteínas/química , Cristalografia , Luz
20.
J Struct Biol ; 181(2): 89-94, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23178456

RESUMO

Selenomethionine labeling is the most common technique used in protein crystallography to derivatize recombinant proteins for experimental phasing using anomalous scattering at tunable synchrotron beamlines. Recently, it has been shown that UV radiation depletes electron density of selenium atoms of selenomethionine residues and that UV radiation-damage-induced phasing (equivalent to single isomorphous replacement) protocol can be applied to calculate experimental phases. Here we present the straightforward integration of a UV source with an in-house diffractometer. We show how this setup can extend the capabilities of a sealed tube X-ray generator and be used for experimental phasing of selenium-labeled proteins.


Assuntos
Cristalografia/métodos , Modelos Moleculares , Proteínas Recombinantes/análise , Selenometionina/química , Raios Ultravioleta , Lasers , Proteínas Recombinantes/química , Difração de Raios X/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA