Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Neuroimage ; 84: 435-42, 2014 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-24045076

RESUMO

Deep brain stimulation (DBS) of the internal pallidal segment (GPi: globus pallidus internus) is gold standard treatment for medically intractable dystonia, but detailed knowledge of mechanisms of action is still not available. There is evidence that stimulation of ventral and dorsal GPi produces opposite motor effects. The aim of this study was to analyse connectivity profiles of ventral and dorsal GPi. Probabilistic tractography was initiated from DBS electrode contacts in 8 patients with focal dystonia and connectivity patterns compared. We found a considerable difference in anterior-posterior distribution of fibres along the mesial cortical sensorimotor areas between the ventral and dorsal GPi connectivity. This finding of distinct GPi connectivity profiles further confirms the clinical evidence that the ventral and dorsal GPi belong to different functional and anatomic motor subsystems. Their involvement could play an important role in promoting clinical DBS effects in dystonia.


Assuntos
Estimulação Encefálica Profunda/métodos , Imagem de Tensor de Difusão/métodos , Distúrbios Distônicos/patologia , Distúrbios Distônicos/terapia , Globo Pálido/patologia , Fibras Nervosas Mielinizadas/patologia , Rede Nervosa/patologia , Adulto , Idoso , Conectoma/métodos , Estimulação Encefálica Profunda/instrumentação , Eletrodos Implantados , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Vias Neurais/patologia , Plasticidade Neuronal , Resultado do Tratamento
2.
Annu Int Conf IEEE Eng Med Biol Soc ; 2016: 6339-6342, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28269699

RESUMO

Hippocampal sclerosis (HS) is the most common cause of temporal lobe epilepsy (TLE) and can be identified in magnetic resonance imaging as hippocampal atrophy and subsequent volume loss. Detecting this kind of abnormalities through simple radiological assessment could be difficult, even for experienced radiologists. For that reason, hippocampal volumetry is generally used to support this kind of diagnosis. Manual volumetry is the traditional approach but it is time consuming and requires the physician to be familiar with neuroimaging software tools. In this paper, we propose an automated method, written as a script that uses FSL-FIRST, to perform hippocampal segmentation and compute an index to quantify hippocampi asymmetry (HAI). We compared the automated detection of HS (left or right) based on the HAI with the agreement of two experts in a group of 19 patients and 15 controls, achieving 84.2% sensitivity, 86.7% specificity and a Cohen's kappa coefficient of 0.704. The proposed method is integrated in the "Advanced Brain Imaging Lab" (ABrIL) cloud neurocomputing platform. The automated procedure is 77% (on average) faster to compute vs. the manual volumetry segmentation performed by an experienced physician.


Assuntos
Epilepsia do Lobo Temporal/patologia , Hipocampo/patologia , Adulto , Automação , Feminino , Hipocampo/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética , Masculino , Neuroimagem , Tamanho do Órgão , Esclerose , Sensibilidade e Especificidade , Fatores de Tempo
3.
Artigo em Inglês | MEDLINE | ID: mdl-25570014

RESUMO

Neuroscience is an increasingly multidisciplinary and highly cooperative field where neuroimaging plays an important role. Neuroimaging rapid evolution is demanding for a growing number of computing resources and skills that need to be put in place at every lab. Typically each group tries to setup their own servers and workstations to support their neuroimaging needs, having to learn from Operating System management to specific neuroscience software tools details before any results can be obtained from each setup. This setup and learning process is replicated in every lab, even if a strong collaboration among several groups is going on. In this paper we present a new cloud service model - Brain Imaging Application as a Service (BiAaaS) - and one of its implementation - Advanced Brain Imaging Lab (ABrIL) - in the form of an ubiquitous virtual desktop remote infrastructure that offers a set of neuroimaging computational services in an interactive neuroscientist-friendly graphical user interface (GUI). This remote desktop has been used for several multi-institution cooperative projects with different neuroscience objectives that already achieved important results, such as the contribution to a high impact paper published in the January issue of the Neuroimage journal. The ABrIL system has shown its applicability in several neuroscience projects with a relatively low-cost, promoting truly collaborative actions and speeding up project results and their clinical applicability.


Assuntos
Neuroimagem , Interface Usuário-Computador , Encéfalo/anatomia & histologia , Encéfalo/fisiologia , Mapeamento Encefálico , Computação em Nuvem , Imagem de Tensor de Difusão , Humanos
4.
J Mol Neurosci ; 39(3): 372-9, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19685014

RESUMO

Dopamine and L: -glutamate are important signals which guide the development of functional neural circuits within the striatal complex. Disequilibrium of these neurotransmitter systems is believed to be etiological for the genesis of neurological and psychiatric diseases. Since dopamine plays a crucial role for the early transmitter-regulated differentiation of striatal GABAergic neurons, we emphasized that dopaminergic transmission may also be involved in the fine tuning of intra-striatal glutamate action. In this study, we report that dopamine decreases the expression of the glutamate transporter GLT1 but not GLAST in striatal astrocytes by measuring gene and protein expression. Using glutamate-uptake approaches, we demonstrate an increase in glutamate clearance of externally added glutamate in dopamine-treated cultures compared to controls. Our findings imply that dopamine regulates the availability of L: -glutamate in the developing striatum. It is also suggested that the application of dopaminergic drugs can interfere with ontogenetic processes within the striatal complex.


Assuntos
Astrócitos/metabolismo , Corpo Estriado/crescimento & desenvolvimento , Corpo Estriado/metabolismo , Dopamina/metabolismo , Transportador 2 de Aminoácido Excitatório/metabolismo , Ácido Glutâmico/metabolismo , Animais , Animais Recém-Nascidos , Astrócitos/citologia , Astrócitos/efeitos dos fármacos , Western Blotting , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/fisiologia , Células Cultivadas , Corpo Estriado/citologia , Dopamina/farmacologia , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/fisiologia , Transportador 1 de Aminoácido Excitatório/efeitos dos fármacos , Transportador 1 de Aminoácido Excitatório/genética , Transportador 1 de Aminoácido Excitatório/metabolismo , Transportador 2 de Aminoácido Excitatório/efeitos dos fármacos , Transportador 2 de Aminoácido Excitatório/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/fisiologia , Ácido Glutâmico/farmacologia , Taxa de Depuração Metabólica/efeitos dos fármacos , Taxa de Depuração Metabólica/fisiologia , Camundongos , Camundongos Endogâmicos BALB C , Reação em Cadeia da Polimerase , RNA Mensageiro/efeitos dos fármacos , RNA Mensageiro/metabolismo , Transmissão Sináptica/efeitos dos fármacos , Transmissão Sináptica/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA