Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Cell ; 168(1-2): 17-19, 2017 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-28086089

RESUMO

Accurate predatory behavior requires coordination between pursuit activity and prey consumption, yet the underlying neuronal circuits are unknown. A novel study published in this issue of Cell identifies two coordinated circuits emanating from the central amygdala that control the efficiency of prey capture and the ability to deliver fatal bites to prey.


Assuntos
Comportamento Predatório , Animais
2.
Nature ; 505(7481): 92-6, 2014 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-24256726

RESUMO

Synchronization of spiking activity in neuronal networks is a fundamental process that enables the precise transmission of information to drive behavioural responses. In cortical areas, synchronization of principal-neuron spiking activity is an effective mechanism for information coding that is regulated by GABA (γ-aminobutyric acid)-ergic interneurons through the generation of neuronal oscillations. Although neuronal synchrony has been demonstrated to be crucial for sensory, motor and cognitive processing, it has not been investigated at the level of defined circuits involved in the control of emotional behaviour. Converging evidence indicates that fear behaviour is regulated by the dorsomedial prefrontal cortex (dmPFC). This control over fear behaviour relies on the activation of specific prefrontal projections to the basolateral complex of the amygdala (BLA), a structure that encodes associative fear memories. However, it remains to be established how the precise temporal control of fear behaviour is achieved at the level of prefrontal circuits. Here we use single-unit recordings and optogenetic manipulations in behaving mice to show that fear expression is causally related to the phasic inhibition of prefrontal parvalbumin interneurons (PVINs). Inhibition of PVIN activity disinhibits prefrontal projection neurons and synchronizes their firing by resetting local theta oscillations, leading to fear expression. Our results identify two complementary neuronal mechanisms mediated by PVINs that precisely coordinate and enhance the neuronal activity of prefrontal projection neurons to drive fear expression.


Assuntos
Medo/fisiologia , Interneurônios/metabolismo , Inibição Neural/fisiologia , Parvalbuminas/metabolismo , Córtex Pré-Frontal/citologia , Córtex Pré-Frontal/fisiologia , Potenciais de Ação , Tonsila do Cerebelo/fisiologia , Animais , Condicionamento Psicológico , Extinção Psicológica , Medo/psicologia , Masculino , Memória/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Modelos Neurológicos , Vias Neurais , Optogenética , Ritmo Teta
3.
J Neurosci ; 31(40): 14107-15, 2011 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-21976495

RESUMO

Uncontrollable stressors produce behavioral changes that do not occur if the organism can exercise behavioral control over the stressor. Previous studies suggest that the behavioral consequences of uncontrollable stress depend on hypersensitivity of serotonergic neurons in the dorsal raphe nucleus (DRN), but the mechanisms involved have not been determined. We used ex vivo single-unit recording in rats to test the hypothesis that the effects of uncontrollable stress are produced by desensitization of DRN 5-HT(1A) autoreceptors. These studies revealed that uncontrollable, but not controllable, tail shock impaired 5-HT(1A) receptor-mediated inhibition of DRN neuronal firing. Moreover, this effect was observed only at time points when the behavioral effects of uncontrollable stress are present. Furthermore, temporary inactivation of the medial prefrontal cortex with the GABA(A) receptor agonist muscimol, which eliminates the protective effects of control on behavior, led even controllable stress to now produce functional desensitization of DRN 5-HT(1A) receptors. Additionally, behavioral immunization, an experience with controllable stress before uncontrollable stress that prevents the behavioral outcomes of uncontrollable stress, also blocked functional desensitization of DRN 5-HT(1A) receptors by uncontrollable stress. Last, Western blot analysis revealed that uncontrollable stress leads to desensitization rather than downregulation of DRN 5-HT(1A) receptors. Thus, treatments that prevent controllable stress from being protective led to desensitization of 5-HT(1A) receptors, whereas treatments that block the behavioral effects of uncontrollable stress also blocked 5-HT(1A) receptor desensitization. These data suggest that uncontrollable stressors produce a desensitization of DRN 5-HT(1A) autoreceptors and that this desensitization is responsible for the behavioral consequences of uncontrollable stress.


Assuntos
Núcleos da Rafe/metabolismo , Receptor 5-HT1A de Serotonina/metabolismo , Estresse Psicológico/metabolismo , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Animais , Relação Dose-Resposta a Droga , Eletrochoque/efeitos adversos , Masculino , Núcleos da Rafe/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Serotonina/metabolismo , Serotonina/farmacologia , Estresse Psicológico/psicologia
4.
Eur J Neurosci ; 35(1): 160-5, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22118376

RESUMO

Stress can be a predisposing factor in the development of psychiatric disorders. However, not all individuals develop psychiatric disorders following a traumatic event. An attempt to understand these individual differences has led to a focus on factors that produce resistance. Interestingly, in rats, an experience with escapable tailshock (ES) before inescapable tailshock (IS) prevents the typical anxiety-like behavioral outcomes of IS. This type of resistance has been termed 'behavioral immunization', and it depends on activation of the medial prefrontal cortex (mPFC) during ES. However, one outcome of IS that is not anxiety-related is potentiation of morphine conditioned place preference (CPP). The present experiments investigated whether prior ES would block IS-induced potentiation of morphine CPP. Rats received either ES, IS or homecage control treatment on day 1 and then either IS or homecage control treatment on day 2. Twenty-four hours following day 2, rats underwent morphine conditioning, and CPP was subsequently assessed. In a second experiment, rats received ES 3, 14 or 56 days prior to IS to determine the duration of behavioral immunization. In a final experiment, rats were microinjected with the GABA(A) agonist muscimol (50 ng/0.5 µL) or saline in the mPFC before day 1 of stress. Prior ES blocked IS-induced potentiation of morphine CPP. This immunizing effect of ES lasted for at least 56 days. Additionally, intra-mPFC muscimol during ES prevented behavioral immunization. These results suggest that prior experience with ES activates the mPFC and produces long-lasting neural alterations that block subsequent IS-induced potentiation of morphine CPP.


Assuntos
Comportamento Animal/efeitos dos fármacos , Condicionamento Operante/efeitos dos fármacos , Morfina/farmacologia , Entorpecentes/farmacologia , Córtex Pré-Frontal/fisiologia , Estresse Psicológico , Animais , Eletrochoque , Agonistas de Receptores de GABA-A/farmacologia , Masculino , Muscimol/farmacologia , Córtex Pré-Frontal/anatomia & histologia , Ratos , Ratos Sprague-Dawley
5.
Brain Behav Immun ; 22(8): 1248-56, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18706994

RESUMO

Recent data suggest that opioids can activate immune-like cells of the central nervous system (glia). This opioid-induced glial activation is associated with decreased analgesia, owing to the release of proinflammatory mediators. Here, we examine in rats whether the putative microglial inhibitor, minocycline, may affect morphine-induced respiratory depression and/or morphine-induced reward (conditioned place preference). Systemic co-administration of minocycline significantly attenuated morphine-induced reductions in tidal volume, minute volume, inspiratory force, and expiratory force, but did not affect morphine-induced reductions in respiratory rate. Minocycline attenuation of respiratory depression was also paralleled with significant attenuation by minocycline of morphine-induced reductions in blood oxygen saturation. Minocycline also attenuated morphine conditioned place preference. Minocycline did not simply reduce all actions of morphine, as morphine analgesia was significantly potentiated by minocycline co-administration. Lastly, morphine dose-dependently increased cyclooxygenase-1 gene expression in a rat microglial cell line, an effect that was dose-dependently blocked by minocycline. Together, these data support that morphine can directly activate microglia in a minocycline-suppressible manner and suggest a pivotal role for minocycline-sensitive processes in the mechanisms of morphine-induced respiration depression, reward, and pain modulation.


Assuntos
Analgesia , Minociclina/farmacologia , Morfina/farmacologia , Insuficiência Respiratória/tratamento farmacológico , Recompensa , Análise de Variância , Animais , Linhagem Celular , Células Cultivadas , Condicionamento Operante/efeitos dos fármacos , Ciclo-Oxigenase 1/metabolismo , Relação Dose-Resposta a Droga , Interações Medicamentosas , Masculino , Microglia/efeitos dos fármacos , Microglia/metabolismo , Minociclina/uso terapêutico , Entorpecentes/farmacologia , Dor/tratamento farmacológico , Medição da Dor , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Insuficiência Respiratória/induzido quimicamente , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Comportamento Espacial/efeitos dos fármacos
6.
Curr Opin Neurobiol ; 52: 60-64, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29705550

RESUMO

The behavioral repertoire of an organism can be highly diverse, spanning from social to defensive. How an animal efficiently switches between distinct behaviors is a fundamental question whose inquiry will provide insights into the mechanisms that are necessary for an organism's survival. Previous work aimed at identifying the neural systems responsible for defensive behaviors, such as freezing, has demonstrated critical interactions between the prefrontal cortex and amygdala. Indeed, this foundational research has provided an indispensable anatomical framework that investigators are now using to understand the physiological mechanisms of defined neural circuits within the prefrontal cortex that code for the rapid and flexible expression of defensive behaviors. Here we review recent findings demonstrating temporal and rate coding mechanisms of freezing behavior in the prefrontal cortex. We hypothesize that anatomical features, such as target structure and cortical layer, as well as the nature of the information to be coded, may be critical factors determining the coding scheme. Furthermore, detailed behavioral analyses may reveal subtypes of defensive behaviors that represent the principle factor governing coding selection.


Assuntos
Tonsila do Cerebelo/fisiologia , Medo/fisiologia , Reação de Congelamento Cataléptica/fisiologia , Córtex Pré-Frontal/fisiologia , Animais
7.
Neuron ; 97(4): 898-910.e6, 2018 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-29398355

RESUMO

Survival critically depends on selecting appropriate defensive or exploratory behaviors and is strongly influenced by the surrounding environment. Contextual discrimination is a fundamental process that is thought to depend on the prefrontal cortex to integrate sensory information from the environment and regulate adaptive responses to threat during uncertainty. However, the precise prefrontal circuits necessary for discriminating a previously threatening context from a neutral context remain unknown. Using a combination of single-unit recordings and optogenetic manipulations, we identified a neuronal subpopulation in the dorsal medial prefrontal cortex (dmPFC) that projects to the lateral and ventrolateral periaqueductal gray (l/vlPAG) and is selectively activated during contextual fear discrimination. Moreover, optogenetic activation and inhibition of this neuronal population promoted contextual fear discrimination and generalization, respectively. Our results identify a subpopulation of dmPFC-l/vlPAG-projecting neurons that control switching between different emotional states during contextual discrimination.


Assuntos
Discriminação Psicológica/fisiologia , Medo/fisiologia , Neurônios/fisiologia , Substância Cinzenta Periaquedutal/fisiologia , Córtex Pré-Frontal/fisiologia , Animais , Condicionamento Clássico , Generalização Psicológica/fisiologia , Masculino , Camundongos Endogâmicos C57BL , Vias Neurais/fisiologia , Optogenética
8.
Psychopharmacology (Berl) ; 191(4): 899-907, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17211648

RESUMO

RATIONALE: We have previously shown that exposure to a single session of inescapable (IS), but not escapable (ES), tailshock can sensitize the subsequent conditioned place preference and locomotor responses to opioids, but not other drug classes. However, prior work suggests that IS might sensitize nonopioid drug responding if the drug were to be preceded by a mild stressor. OBJECTIVES: In the following experiments, we examined the effects of IS and ES on the subsequent locomotor response to brief footshock and/or cocaine administration. METHODS: First, we measured the locomotor response to cocaine (0, 1, 5, 10 mg/kg, intraperitoneally) 48 h after a single session of IS in adult, male Sprague-Dawley rats. Then, this procedure was repeated with 10 mg/kg cocaine, except that half of the rats received two footshocks immediately before drug administration. Finally, we manipulated the escapability of the initial stressor, as rats received either ES or yoked IS 48 h prior to footshock and cocaine administration. RESULTS: IS did not affect the subsequent locomotor response to cocaine, but did enhance this response when cocaine administration was immediately preceded by two footshocks. The footshocks alone were without effect. This sensitizing effect was dependent on the escapability of the initial stressor, as ES did not alter the locomotor response to footshock and cocaine administration. CONCLUSIONS: These results indicate that acute exposure to IS, but not ES, can sensitize the locomotor response to cocaine 48 h later, but only when cocaine administration is immediately preceded by a brief stressor.


Assuntos
Comportamento Animal/efeitos dos fármacos , Estimulantes do Sistema Nervoso Central/administração & dosagem , Cocaína/administração & dosagem , Eletrochoque , Atividade Motora/efeitos dos fármacos , Estresse Psicológico , Animais , Condicionamento Psicológico/efeitos dos fármacos , Relação Dose-Resposta a Droga , Esquema de Medicação , Eletrochoque/efeitos adversos , Injeções Intraperitoneais , Masculino , Desempenho Psicomotor/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Restrição Física/efeitos adversos , Recompensa , Estresse Psicológico/etiologia , Cauda
9.
Psychopharmacology (Berl) ; 191(4): 909-17, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17211647

RESUMO

RATIONALE: Acute stress has been shown to facilitate the rewarding effects of a number of commonly abused drugs, although the stressor typically must be administered either immediately before or during drug administration and often in the same environment. We have previously reported that a single session of an uncontrollable (inescapable tailshock, IS), but not controllable (escapable tailshock, ES), stressor can enhance the conditioned place preference (CPP) response to morphine, even when stressor and drug administration are separated temporally and spatially. However, this persistent, trans-situational enhancement did not occur to amphetamine CPP. OBJECTIVES: The following experiments were conducted to determine whether the long-term effects of IS on drug reward are specific to opioids. MATERIALS AND METHODS: Adult, male Sprague-Dawley rats were exposed to a single session of IS or remained in their home cages (HC). Twenty-four hours later, using an unbiased procedure, CPP conditioning was conducted with either oxycodone (0, 2, or 5 mg/kg, sc), cocaine (0, 1, 5, or 10 mg/kg, ip), or ethanol (0.3, 1, or 2 g/kg, ip). Another group of rats were exposed to IS, ES, or HC treatment and conditioned with oxycodone (5 mg/kg, sc) 24 h later. RESULTS: IS enhanced the subsequent CPP response to oxycodone, but not cocaine or ethanol. This enhancement was dependent on the controllability of the stressor, as ES did not affect oxycodone CPP. CONCLUSIONS: These results indicate that the long-term, trans-situational enhancing effect of uncontrollable stress on drug reward is specific to opioids.


Assuntos
Analgésicos Opioides/administração & dosagem , Comportamento Animal/efeitos dos fármacos , Depressores do Sistema Nervoso Central/administração & dosagem , Estimulantes do Sistema Nervoso Central/administração & dosagem , Cocaína/administração & dosagem , Etanol/administração & dosagem , Oxicodona/administração & dosagem , Estresse Psicológico , Animais , Condicionamento Psicológico/efeitos dos fármacos , Relação Dose-Resposta a Droga , Esquema de Medicação , Eletrochoque/efeitos adversos , Injeções Subcutâneas , Masculino , Atividade Motora/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Restrição Física/efeitos adversos , Recompensa , Estresse Psicológico/etiologia , Cauda , Fatores de Tempo
10.
Nat Neurosci ; 19(4): 605-12, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26878674

RESUMO

Fear expression relies on the coordinated activity of prefrontal and amygdala circuits, yet the mechanisms allowing long-range network synchronization during fear remain unknown. Using a combination of extracellular recordings, pharmacological and optogenetic manipulations, we found that freezing, a behavioral expression of fear, temporally coincided with the development of sustained, internally generated 4-Hz oscillations in prefrontal-amygdala circuits. 4-Hz oscillations predict freezing onset and offset and synchronize prefrontal-amygdala circuits. Optogenetic induction of prefrontal 4-Hz oscillations coordinates prefrontal-amygdala activity and elicits fear behavior. These results unravel a sustained oscillatory mechanism mediating prefrontal-amygdala coupling during fear behavior.


Assuntos
Tonsila do Cerebelo/fisiologia , Relógios Biológicos/fisiologia , Medo/fisiologia , Medo/psicologia , Optogenética/métodos , Córtex Pré-Frontal/fisiologia , Estimulação Acústica/efeitos adversos , Animais , Condicionamento Psicológico/fisiologia , Extinção Psicológica/fisiologia , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Vias Neurais/fisiologia
11.
Biol Psychiatry ; 78(5): 298-306, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-25908496

RESUMO

Recent technological developments, such as single unit recordings coupled to optogenetic approaches, have provided unprecedented knowledge about the precise neuronal circuits contributing to the expression and recovery of conditioned fear behavior. These data have provided an understanding of the contributions of distinct brain regions such as the amygdala, prefrontal cortex, hippocampus, and periaqueductal gray matter to the control of conditioned fear behavior. Notably, the precise manipulation and identification of specific cell types by optogenetic techniques have provided novel avenues to establish causal links between changes in neuronal activity that develop in dedicated neuronal structures and the short and long-lasting expression of conditioned fear memories. In this review, we provide an update on the key neuronal circuits and cell types mediating conditioned fear expression and recovery and how these new discoveries might refine therapeutic approaches for psychiatric conditions such as anxiety disorders and posttraumatic stress disorder.


Assuntos
Encéfalo/patologia , Encéfalo/fisiologia , Medo , Vias Neurais/fisiologia , Recuperação de Função Fisiológica/fisiologia , Animais , Ansiedade/patologia , Ansiedade/terapia , Humanos , Optogenética
12.
Behav Brain Res ; 219(2): 378-81, 2011 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-21262267

RESUMO

In rodents, exposure to acute inescapable, but not escapable, stress potentiates morphine conditioned place preference (CPP), an effect that is dependent upon hyperactivation of serotonin (5-HT) neurons in the dorsal raphe nucleus (DRN). Six weeks of voluntary wheel running constrains activation of DRN 5-HT neurons during exposure to inescapable stress. Six weeks of voluntary wheel running before inescapable stress blocked stress-induced potentiation of morphine CPP.


Assuntos
Analgésicos Opioides/farmacologia , Condicionamento Operante/efeitos dos fármacos , Desamparo Aprendido , Morfina/farmacologia , Corrida/psicologia , Estresse Psicológico/psicologia , Animais , Neurônios/fisiologia , Condicionamento Físico Animal/psicologia , Núcleos da Rafe/fisiologia , Ratos , Ratos Sprague-Dawley , Recompensa , Serotonina/fisiologia
13.
Neuropsychopharmacology ; 34(4): 834-43, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18368036

RESUMO

Experiential factors, such as stress, are major determinants of vulnerability to drug addiction and relapse. The behavioral controllability of the stressor is a major determinant of how exposure to a stressor impacts addictive processes. Recent evidence suggests that controllable stressors, such as escapable shock (ES), activate ventral regions of the medial prefrontal cortex (mPFCv), whereas physically identical, but uncontrollable stress (inescapable shock, IS) does not. This activation is critical to the blunting effect that control has on neurochemical and behavioral sequelae of stress. Our laboratory has previously shown that IS, but not ES, potentiates morphine-conditioned place preference (CPP). However, the role of the mPFCv in this phenomenon is unknown. The present experiments investigated the role of the mPFCv during ES and IS in determining the effects of the stressor on subsequent morphine-CPP. Intra-mPFCv microinjection of the GABA(A) agonist muscimol 1 h before ES led ES to potentiate morphine-CPP, as does IS. Conversely, the potentiation of morphine-CPP normally observed in IS rats was blocked by intra-mPFCv microinjection of the GABA(A) antagonist picrotoxin 1 h before IS. These results suggest that during stress, activation of the mPFCv prevents subsequent potentiation of morphine-CPP, whereas inactivation of the mPFCv during stress does not. Thus, activation of the mPFCv during a stress experience is both necessary and sufficient to block the impact of stress on morphine-CPP, and control over stress blunts stress-induced potentiation of morphine effects by activating the mPFCv.


Assuntos
Comportamento Animal , Condicionamento Psicológico , Morfina/farmacologia , Córtex Pré-Frontal/fisiologia , Estresse Psicológico/fisiopatologia , Análise de Variância , Animais , Comportamento Animal/efeitos dos fármacos , Reação de Fuga/efeitos dos fármacos , Agonistas GABAérgicos/farmacologia , Antagonistas GABAérgicos/farmacologia , Agonistas de Receptores de GABA-A , Antagonistas de Receptores de GABA-A , Masculino , Microinjeções , Atividade Motora/efeitos dos fármacos , Muscimol/farmacologia , Picrotoxina/farmacologia , Ratos , Ratos Sprague-Dawley
14.
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA