Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1862(12): 1469-1480, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28888833

RESUMO

Iron depletion (ID) has been shown to induce the liver expression of Cyp7a1, the rate-limiting enzyme initiating conversion of cholesterol to bile acids (BA), although the effect on bile acids metabolism and bile production is unknown. Therefore, we investigated changes in bile secretion and BA synthesis during diet-induced iron depletion (ID) in rats. ID increased bile flow along with augmented biliary excretion of bile acids, glutathione, cholesterol and phospholipids. Accordingly, we found transcriptional upregulation of the Cyp7a1, Cyp8b1, and Cyp27a1 BA synthetic enzymes, as well as induction of the Abcg5/8 cholesterol transporters in ID rat livers. In contrast, intravenous infusion of 3H-taurocholate failed to elicit any difference in biliary secretion of this compound in the ID rats. This corresponded with unchanged expression of canalicular rate-limiting transporters for BA as well as glutathione. We also observed that ID substantially changed the spectrum of BA in bile and decreased plasma concentrations of BA and cholesterol. Experiments with differentiated human hepatic HepaRG cells confirmed human CYP7A1 orthologue upregulation resulting from reduced iron concentrations. Results employing a luciferase reporter gene assay suggest that the transcriptional activation of the CYP7A1 promoter under ID conditions works independent of farnesoid X (FXR), pregnane X (PXR) and liver X (LXRα) receptors activation. It can be concluded that this study characterizes the molecular mechanisms of modified bile production as well as cholesterol as along with BA homeostasis during ID. We propose complex upregulation of BA synthesis, and biliary cholesterol secretion as the key factors affected by ID.


Assuntos
Ácidos e Sais Biliares/biossíntese , Colesterol/metabolismo , Glutationa/metabolismo , Deficiências de Ferro , Animais , Linhagem Celular , Colestanotriol 26-Mono-Oxigenase/biossíntese , Colesterol 7-alfa-Hidroxilase/biossíntese , Humanos , Masculino , Ratos , Ratos Wistar , Esteroide 12-alfa-Hidroxilase/biossíntese
2.
Acta Medica (Hradec Kralove) ; 60(1): 5-11, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28399389

RESUMO

Flubendazole is a widely used anthelmintic drug belonging to benzimidazole group. The molecular mechanism of action of flubendazole is based on its specific binding to tubulin, which results in disruption of microtubule structure and function, and in the interference with the microtubule-mediated transport of secretory vesicles in absorptive tissues of helminths. The microtubule-disrupting properties of benzimidazole derivatives raised recently interest in these compounds as possible anti-cancer agents. In this minireview flubendazole effects towards selected human malignant cells including myeloma, leukemia, neuroblastoma, breast cancer, colorectal cancer and melanoma are discussed along with basic data on its pharmacokinetics, metabolism and toxicity.


Assuntos
Senescência Celular/efeitos dos fármacos , Leucemia/tratamento farmacológico , Mebendazol/análogos & derivados , Microtúbulos/metabolismo , Mieloma Múltiplo/tratamento farmacológico , Sobrevivência Celular , Relação Dose-Resposta a Droga , Humanos , Mebendazol/uso terapêutico , Tubulina (Proteína)/metabolismo
3.
Fundam Clin Pharmacol ; 29(2): 164-77, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25601431

RESUMO

On account of its strong ability to become chemoresistant after a primary response to drugs, malignant melanoma (MM) remains a therapeutic challenge. This study focuses on acquired resistance to vinca alkaloids (VAs) using VA-resistant MM cell lines (CAL1R-VCR, CAL1R-VDS, and CAL1R-VRB), established by long-term continuous exposure of parental CAL1-wt cells to vincristine (VCR), vindesine (VDS), or vinorelbine (VRB), respectively. Transcriptomic profiling using rma and rdam methods led to distinguish two cell groups: CAL1R-VCR and CAL1R-VDS, CAL1R-VRB, and CAL1-wt. mgsa of the specifically altered genes in the first group evidenced the GO terms 'lysosomal lumen' and 'vacuolar lumen' linked to underexpressed genes, and 'endoplasmic reticulum (ER) stress response' associated with overexpressed genes. A specific reduction of lysosomal enzymes, independent of acidic vacuole organelle (AVO) turnover, was observed (LTG probe) in CAL1R-VCR and CAL1R-VDS cells. It was associated with the specific lowering of cathepsin B and L, known to be involved in the lysosomal pathway of apoptosis. Confirming gene profiling, the same groups (CAL1R-VCR and CAL1R-VDS, CAL1-wt and CAL1R-VRB) could be distinguished regarding the VA-mediated changes on mean size areas and on acidic compartment volumes. These two parameters were reduced in CAL1R-VCR and CAL1R-VDS cells, suggesting a smaller AVO accumulation and thus a reduced sensitivity to lysosomal membrane permeabilization-mediated apoptosis. In addition, 'ER stress response' inhibition by tauroursodeoxycholic acid induced a higher VA sensitization of the first cell group. In conclusion, lysosomes and unfolded protein response could be key determinants of the differential resistance of MM to VAs.


Assuntos
Resistencia a Medicamentos Antineoplásicos/genética , Lisossomos/genética , Melanoma/genética , Resposta a Proteínas não Dobradas/genética , Alcaloides de Vinca/farmacologia , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Humanos , Lisossomos/efeitos dos fármacos , Melanoma/tratamento farmacológico , Transcriptoma/efeitos dos fármacos , Transcriptoma/genética , Resposta a Proteínas não Dobradas/efeitos dos fármacos , Alcaloides de Vinca/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA