RESUMO
BACKGROUND: The relationship of microbiota composition dynamics and the progression of subclinical atherosclerosis in people with HIV (PWH) remains unknown. METHODS: 96-week, prospective, longitudinal study in virologically-suppressed PWH. Carotid intima-media thickness (cIMT) measurements and stool samples were obtained at baseline, 48-week and 96-week visits. cIMT progression was defined as an increase >10% and/or detection of new carotid plaque. To profile the gut microbiome, amplification and sequencing of 16S ribosomal-RNA (V3-V4 variable regions) were carried out following the Illumina protocol. Sequencing was performed with MiSeq platform. RESULTS: 191, 190 and 167 patients had available fecal samples for microbiome analysis at the baseline, 48- and 96-week visits, respectively. 87 (43%) participants showed atherosclerosis progression, and 54 (26.7%) presented new carotid plaque. No significant differences were observed in adjusted α-diversity indices between groups defined by cIMT progression. Beta-diversity determined through principal coordinate analysis distances showed that the groups exhibited distinct microbial profiles (PERMANOVA p-value = 0.03). Longitudinal analysis with ANCOM-BC2 adjusted for traditional cardiovascular risk factors, MSM and nadir CD4 count revealed that cIMT progression was consistently associated with Agathobacter and Ruminococcus_2, while non-progression was consistently associated with Prevotella_7. CONCLUSION: Progression of atherosclerosis in PWH might be associated with distinctive signatures in the gut microbiota.
RESUMO
To support personalized diets targeting the gut microbiota, we employed an in vitro digestion-fermentation model and 16S rRNA gene sequencing to analyze the microbiota growing on representative foods of the Mediterranean and Western diets, as well as the influence of cooking methods. Plant- and animal-derived foods had significantly different impacts on the abundances of bacterial taxa. Animal and vegetable fats, fish and dairy products led to increases in many taxa, mainly within the Lachnospiraceae. In particular, fats favored increases in the beneficial bacteria Faecalibacterium, Blautia, and Roseburia. However, butter, as well as gouda cheese and fish, also resulted in the increase of Lachnoclostridium, associated to several diseases. Frying and boiling produced the most distinct effects on the microbiota, with members of the Lachnospiraceae and Ruminococcaceae responding the most to the cooking method employed. Nevertheless, cooking effects were highly individualized and food-dependent, challenging the investigation of their role in personalized diets.
RESUMO
While the intestinal microbiome seems a major driver of persistent immune defects in people with HIV (PWH), little is known about its fungal component, the mycobiome. We assessed the inter-kingdom mycobiome-bacteriome interactions, the impact of diet, and the association with the innate and adaptive immunity in PWH on antiretroviral therapy. We included 24 PWH individuals and 12 healthy controls. We sequenced the Internal Transcribed Spacer 2 amplicons, determined amplicon sequence variants, measured biomarkers of the innate and adaptive immunity in blood and relations with diet. Compared to healthy controls, PWH subjects exhibited a distinct and richer mycobiome and an enrichment for Debaryomyces hansenii, Candida albicans, and Candida parapsilosis. In PWH, Candida and Pichia species were strongly correlated with several bacterial genera, including Faecalibacterium genus. Regarding the links between the mycobiome and systemic immunology, we found a positive correlation between Candida species and the levels of proinflammatory cytokines (sTNF-R2 and IL-17), interleukin 22 (a cytokine implicated in the regulation of mucosal immunity), and CD8+ T cell counts. This suggests an important role of the yeasts in systemic innate and adaptive immune responses. Finally, we identified inter-kingdom interactions implicated in fiber degradation, short-chain fatty acid production, and lipid metabolism, and an effect of vegetable and fiber intake on the mycobiome. Therefore, despite the great differences in abundance and diversity between the bacterial and fungal communities of the gut, we defined the changes associated with HIV, determined several different inter-kingdom associations, and found links between the mycobiome, nutrient metabolism, and systemic immunity.
Assuntos
Microbioma Gastrointestinal , Infecções por HIV , Micobioma , Bactérias/genética , Candida/genética , Dieta , Fungos/genética , Infecções por HIV/microbiologia , Humanos , InflamaçãoRESUMO
Cocoa is a highly consumed food with beneficial effects on human health. Cocoa roasting has an important influence on its sensory and nutritional characteristics; therefore, roasting could also play a role in cocoa bioactivity. Thus, the aim of this paper is to unravel the effect of cocoa roasting conditions on its antioxidant capacity and modifications of gut microbiota after in vitro digestion-fermentation. HMF and furfural, chemical markers of non-enzymatic browning, were analyzed in unroasted and roasted cocoa powder at different temperatures, as well as different chocolates. The antioxidant capacity decreased with roasting, most probably due to the loss of phenolic compounds during heating. In the case of the evaluated chocolates, the antioxidant capacity was 2-3 times higher in the fermented fraction. On the other hand, HMF and furfural content increased during roasting due to increasing temperatures. Moreover, unroasted and roasted cocoa powder have different effects on gut microbial communities. Roasted cocoa favored butyrate production, whereas unroasted cocoa favored acetate and propionate production in a significant manner. In addition, unroasted and roasted cocoa produced significantly different gut microbial communities in terms of composition. Although many bacteria were affected, Veillonella and Faecalibacterium were some of the most discriminant ones; whereas the former is a propionate producer, the latter is a butyrate producer that has also been linked to positive effects on the inflammatory health of the gut and the immune system. Therefore, unroasted and roasted cocoa (regardless of the roasting temperature) promote different bacteria and a different SCFA production.