Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 20(22): 15030-15036, 2018 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-29789829

RESUMO

Organo-metal-halide perovskites are a promising set of materials for optoelectronic applications such as solar cells, light emitting diodes and lasers. Perovskite thin films have demonstrated amplified spontaneous emission thresholds as low as 1.6 µJ cm-2 and lasing thresholds as low as 0.2 µJ cm-2. Recently the performance of perovskite light emitting diodes has rapidly risen due to the formation of quasi 2D films using bulky ligands such as phenylethylammonium. Despite the high photoluminescent yield and external quantum efficiency of quasi 2D perovskites, few reports exist on amplified spontaneous emission. We show within this report that the threshold for amplified spontaneous emission of quasi 2D perovskite films increases with the concentration of phenylethylammonium. We attribute this increasing threshold to a charge transfer state at the PEA interface that competes for excitons with the ASE process. Additionally, the comparatively slow inter-grain charge transfer process cannot significantly contribute to the fast radiative recombination in amplified spontaneous emission. These results suggest that relatively low order PEA based perovskite films that are suitable for LED applications are not well suited for lasing applications. However high order films were able to maintain their low threshold values and may still benefit from improved stability.

2.
Nat Commun ; 8(1): 2250, 2017 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-29269827

RESUMO

Organic light-emitting diodes have become a mainstream display technology because of their desirable features. Third-generation electroluminescent devices that emit light through a mechanism called thermally activated delayed fluorescence are currently garnering much attention. However, unsatisfactory device stability is still an unresolved issue in this field. Here we demonstrate that electron-transporting n-type hosts, which typically include an acceptor moiety in their chemical structure, have the intrinsic ability to balance the charge fluxes and broaden the recombination zone in delayed fluorescence organic electroluminescent devices, while at the same time preventing the formation of high-energy excitons. The n-type hosts lengthen the lifetimes of green and blue delayed fluorescence devices by > 30 and 1000 times, respectively. Our results indicate that n-type hosts are suitable to realize stable delayed fluorescence organic electroluminescent devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA