Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Cell Rep ; 19(11): 2257-2271, 2017 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-28614713

RESUMO

Neurons expressing agouti-related protein (AgRP) are essential for feeding. The majority of these neurons are located outside the blood-brain barrier (BBB), allowing them to directly sense circulating metabolic factors. Here, we show that, in adult mice, AgRP neurons outside the BBB (AgRPOBBB) were rapidly ablated by peripheral administration of monosodium glutamate (MSG), whereas AgRP neurons inside the BBB and most proopiomelanocortin (POMC) neurons were spared. MSG treatment induced proliferation of tanycytes, the putative hypothalamic neural progenitor cells, but the newly proliferated tanycytes did not become neurons. Intriguingly, AgRPOBBB neuronal number increased within a week after MSG treatment, and newly emerging AgRP neurons were derived from post-mitotic cells, including some from the Pomc-expressing cell lineage. Our study reveals that the lack of protection by the BBB renders AgRPOBBB vulnerable to lesioning by circulating toxins but that the rapid re-emergence of AgRPOBBB is part of a reparative process to maintain energy balance.


Assuntos
Barreira Hematoencefálica/citologia , Hipotálamo/citologia , Neurônios/citologia , Pró-Opiomelanocortina/metabolismo , Animais , Transporte Biológico , Barreira Hematoencefálica/metabolismo , Hipotálamo/metabolismo , Camundongos , Neurônios/metabolismo
2.
Mol Metab ; 4(11): 881-9, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26629411

RESUMO

BACKGROUND: The proper establishment of hypothalamic feeding circuits during early development has a profound influence on energy homeostasis, and perturbing this process could predispose individuals to obesity and its associated consequences later in life. The maturation of hypothalamic neuronal circuitry in rodents takes place during the initial postnatal weeks, and this coincides with a dramatic surge in the circulating level of leptin, which is known to regulate the outgrowth of key neuronal projections in the maturing hypothalamus. Coincidently, this early postnatal period also marks the rapid proliferation and expansion of astrocytes in the brain. METHODS: Here we examined the effects of leptin on the proliferative capacity of astrocytes in the developing hypothalamus by treating postnatal mice with leptin. Mutant mice were also generated to conditionally remove leptin receptors from glial fibrillary acidic protein (GFAP)-expressing cells in the postnatal period. RESULTS AND CONCLUSIONS: We show that GFAP-expressing cells in the periventricular zone of the 3rd ventricle were responsive to leptin during the initial postnatal week. Leptin enhanced the proliferation of astrocytes in the postnatal hypothalamus and conditional removal of leptin receptors from GFAP-expressing cells during early postnatal period limited astrocyte proliferation. While increasing evidence demonstrates a direct role of leptin in regulating astrocytes in the adult brain, and given the essential function of astrocytes in modulating neuronal function and connectivity, our study indicates that leptin may exert its metabolic effects, in part, by promoting hypothalamic astrogenesis during early postnatal development.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA