Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Med Sci ; 20(5): 639-651, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37082726

RESUMO

Zirconia and polyetheretherketone (PEEK) are two biomaterials widely investigated as substitute for metals in oral prosthetic rehabilitation. To achieve a proper biomechanical behavior, the prosthetic biomaterials must ensure a good resistance to loads, as this is a crucial characteristic enabling their use in dental applications. The aim of this study was to investigate differences in the fracture resistance of different biomaterials in an experimental environment: fixed partial dentures (FPDs) screwed in a prototype of biomimetic mandible. 10 Samples of FPDs were allocated in 2 groups (A and B): Group A (n=5) involved FPDs in zirconia-ceramic, and Group B (n=5) involved FPDs in PEEK-composite. The samples were loaded by means of a three-point bending mechanical test, and the load to fracture has been evaluated generating a point-by-point graphics (speed/load and time/deformation). The samples were further analyzed by micro-computed tomography (micro-CT) and described under experimental loading conditions. Zirconia-ceramic FDPs were the samples reporting the worst results, showing a lower value of vertical displacement with respect to PEEK-based samples. The micro-CT results have further confirmed the preliminary results previously described. This in vitro study aims to give analytic data on the reliability of PEEK as a reliable and strong biomaterial for prosthetic treatments.


Assuntos
Materiais Biocompatíveis , Teste de Materiais , Reprodutibilidade dos Testes , Microtomografia por Raio-X
2.
Medicina (Kaunas) ; 58(9)2022 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-36143934

RESUMO

Background and Objectives: Antimicrobial resistance represents a serious problem, and it may be life-threatening in the case of severe hospital-acquired infections (HAI). Antibiotic abuse and multidrug resistance (MDR) have significantly increased this burden in the last decades. The aim of this study was to investigate the distribution and susceptibility rates of five selected bacterial species (E. coli, K. pneumoniae, P. aeruginosa, S. aureus and E. faecium) in two healthcare settings located in the Apulia region (Italy). Materials and Methods: Setting n.1 was a university hospital and setting n.2 was a research institute working on oncological patients. All the enrolled patients were diagnosed for bacterial HAI. The observation period was between August and September 2021. Clinical samples were obtained from several biological sources, in different hospital wards. Bacterial identification and susceptibility were tested by using the software VITEC 2 Single system. Results: In this study, a higher incidence of multi-drug-resistant K. pneumoniae was reported (42,2% in setting n.1 and 50% in setting n.2), with respect to the Italian 2019 statistics report (30.3%). All the isolates of E. faecium and S. aureus were susceptible to linezolid. All the bacterial isolates of P. aeruginosa and most of K. pneumoniae were susceptible to ceftazidime-avibactam. Amikacin and nitrofurantoin represented a good option for treating E. coli infections. Multidrug-resistant (MDR) P. aeruginosa, methicillin-resistant S. aureus (MRSA) and vancomycin-resistantE. faecium (VRE) had a lower incidence in the clinical setting, with respect to E. coli and K. pneumoniae. Conclusions: The data obtained in this study can support clinicians towards a rational and safe use of antibiotics for treating the infections caused by these resistant strains, to enhance the overall efficacy of the current antibiotic protocols used in the main healthcare environments.


Assuntos
Infecção Hospitalar , Staphylococcus aureus Resistente à Meticilina , Amicacina/uso terapêutico , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Bactérias , Infecção Hospitalar/tratamento farmacológico , Infecção Hospitalar/epidemiologia , Infecção Hospitalar/microbiologia , Farmacorresistência Bacteriana , Escherichia coli , Hospitais , Humanos , Linezolida/uso terapêutico , Testes de Sensibilidade Microbiana , Nitrofurantoína/uso terapêutico , Estudos Retrospectivos , Staphylococcus aureus , Vancomicina/uso terapêutico
3.
Dent Mater ; 40(3): 557-562, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38326212

RESUMO

OBJECTIVES: This study aimed to investigate the biocompatibility, osteogenic and antibacterial activity of biomedical devices based on Magnesium (Mg) Alloys manufactured by Superplastic Forming process (SPF) and subjected to Hydrothermal (HT) and Sol-Gel Treatment (Sol-Gel). METHODS: Mg-SPF devices subjected to Hydrothermal (Mg-SPF+HT) and Sol-Gel Treatment (Mg-SPF+Sol-Gel) were investigated. The biocompatibility of Mg-SPF+Sol-Gel and Mg-SPF+HT devices was observed by indirect and direct cytotoxicity assays, whereas the colonization of sample surfaces was assessed by confocal microscopy. qRT-PCR analysis and microbial growth curve analyses were employed to evaluate the osteogenic and antibacterial activity of both SPF-Mg treated devices, respectively. RESULTS: Mg-SPF+HT and Mg-SPF+Sol-Gel showed a high degree of biocompatibility. Analysis of mRNA expression of osteogenic genes in cells cultured on Mg-treated devices revealed a significant upregulation of the expression levels of BMP2 and Runx-2. Furthermore, the bacterial growth in strains developed in contact with both the Mg-SPF+HT and Mg-SPF+Sol-Gel devices was lower than that observed in the control. SIGNIFICANCE: Hydrothermal and Sol-Gel Treatments of Mg alloys obtained through the SPF process demonstrated bioactive, osteogenic and antibacterial activity, offering a promising alternative to conventional Mg-based devices. The obtained Mg-based materials may have the potential to enhance the tunability of temporary devices in maxillary reconstruction, eliminating the need for second surgeries, and ensuring a good bone reconstruction and a reduced implant failure rate due to bacterial infections.


Assuntos
Ligas , Magnésio , Magnésio/farmacologia , Ligas/farmacologia , Antibacterianos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA