Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Biochem Biophys Res Commun ; 506(3): 731-738, 2018 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-30384998

RESUMO

Immune-checkpoint receptors are a set of signal transduction proteins that can stimulate or inhibit specific anti-tumor responses. It is well established that cancer cells interact with different immune checkpoints to shut down T-cell response, thereby enabling cancer proliferation. Given the importance of immune checkpoint receptors, a structure-function analysis of these systems is imperative. However, recombinant expression and purification of these membrane originated proteins is still a challenge. Therefore, many attempts are being made to improve their expression and solubility while preserving their biological relevance. For this purpose, we designed an E. coli-based optimization system that enables the acquisition of mutations that increases protein solubility and affinity towards its native ligand, while maintaining biological activity. Here we focused on the well-characterized extracellular domain of the 'programmed cell death protein 1' (PD1), an immune checkpoint receptor known to inhibit T-cell proliferation by interacting with its ligands PD-L1 and PD-L2. The simple ELISA-based screening system shown here enabled the identification of high-affinity, highly soluble, functional variants derived from the extracellular domain of human PD1. The system was based on the expression of a GST-tagged variants library in E. coli, which enabled the selection of improved PD1 variants after a single optimization round. Within only two screening rounds, the most active variant showed a 5-fold higher affinity and 2.4-fold enhanced cellular activity as compared to the wild type protein. This scheme can be translated toward other types of challenging receptors toward development of research tools or alternative therapeutics.


Assuntos
Antígeno B7-H1/metabolismo , Escherichia coli/metabolismo , Receptor de Morte Celular Programada 1/metabolismo , Sequência de Aminoácidos , Animais , Células CHO , Cricetinae , Cricetulus , Biblioteca Gênica , Humanos , Receptor de Morte Celular Programada 1/química , Ligação Proteica , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Proteínas Recombinantes/metabolismo , Reprodutibilidade dos Testes , Solubilidade
2.
Mol Biol Rep ; 40(3): 2205-13, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23212614

RESUMO

Chronic myeloid leukemia (CML) is characterized by the presence of p210(Bcr-Abl) which exhibits an abnormal kinase activity. Selective Abl kinase inhibitors have been successfully established for the treatment of CML. Despite high rates of clinical response, CML patients can develop resistance against these kinase inhibitors mainly due to point mutations within the Abl protein kinase domain. Previously, we have identified oleic acid as the active component in the mushroom Daedalea gibbosa that inhibited the kinase activity of Bcr-Abl. Here, we report that the oleyl amine derivatives, S-1-(1-Hydroxymethyl-2-methyl-propyl)-3-octadec-9-enyl-urea [oleylaminocarbonyl-L-N-valinol,oroleylaminocarbonyl-S-2-isopropyl-N-ethanolamine,oleylamine-carbonyl-L-valinol] (cpd 6) and R-1-(1-Hydroxymethyl-2-methyl-propyl)-3-octadec-9-enyl-urea [oleylamineocarbonyl-D-N-valinol, oleylaminocarbonyl-R-2-isopropyl-N-ethanolamine, or oleylamine-carbonyl-D-valinol] (cpd 7), inhibited the activity of the native and T315I mutated Bcr-Abl. Furthermore, cpd 6 and 7 exhibited higher activity towards the oncogenic Bcr-Abl in comparison to native c-Abl in SupB15 Ph-positive ALL cell line.


Assuntos
Proteínas de Fusão bcr-abl/genética , Proteínas de Fusão bcr-abl/metabolismo , Mutação , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Valina/análogos & derivados , Aminas/química , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Proteínas de Fusão bcr-abl/química , Humanos , Janus Quinase 2/genética , Janus Quinase 2/metabolismo , Conformação Molecular , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Fosforilação/efeitos dos fármacos , Ligação Proteica , Inibidores de Proteínas Quinases/química , Ensaio Tumoral de Célula-Tronco , Valina/química , Valina/farmacologia
3.
Vaccine ; 41(33): 4918-4925, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37400285

RESUMO

The most common source of foodborne Salmonella infection in humans is poultry eggs and meat, such that prevention of human infection is mostly achieved by vaccination of farm animals. While inactivated and attenuated vaccines are available, both present drawbacks. This study aimed to develop a novel vaccination strategy, which combines the effectiveness of live-attenuated and safety of inactivated vaccines by construction of inducible self-destructing bacteria utilizing toxin-antitoxin (TA) systems. Hok-Sok and CeaB-CeiB toxin-antitoxin systems were coupled with three induction systems aimed for activating cell killing upon lack of arabinose, anaerobic conditions or low concentration of metallic di-cations. The constructs were transformed into a pathogenic Salmonella enterica serovar Enteritidis strain and bacteria elimination was evaluated in vitro under specific activating conditions and in vivo following administration to chickens. Four constructs induced bacterial killing under the specified conditions, both in growth media and within macrophages. Cloacal swabs of all chicks orally administered transformed bacteria had no detectable levels of bacteria within 9 days of inoculation. By day ten, no bacteria were identified in the spleen and liver of most birds. Antibody immune response was raised toward TA carrying Salmonella which resembled response toward the wildtype bacteria. The constructs described in this study led to self-destruction of virulent Salmonella enteritidis both in vitro and in inoculated animals within a period which is sufficient for the induction of a protective immune response. This system may serve as a safe and effective live vaccine platform against Salmonella as well as other pathogenic bacteria.


Assuntos
Antitoxinas , Doenças das Aves Domésticas , Salmonelose Animal , Vacinas contra Salmonella , Toxinas Biológicas , Animais , Humanos , Galinhas , Salmonella enteritidis , Vacinação/veterinária , Vacinas Atenuadas
4.
BMC Cancer ; 12: 563, 2012 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-23186157

RESUMO

BACKGROUND: Philadelphia positive leukemias are characterized by the presence of Bcr-Abl fusion protein which exhibits an abnormal kinase activity. Selective Abl kinase inhibitors have been successfully established for the treatment of Ph (+) leukemias. Despite high rates of clinical response, Ph (+) patients can develop resistance against these kinase inhibitors mainly due to point mutations within the Abl protein. Of special interest is the 'gatekeeper' T315I mutation, which confers complete resistance to Abl kinase inhibitors. Recently, GNF-2, Abl allosteric kinase inhibitor, was demonstrated to possess cellular activity against Bcr-Abl transformed cells. Similarly to Abl kinase inhibitors (AKIs), GNF-2 failed to inhibit activity of mutated Bcr-Abl carrying the T315I mutation. METHODS: Ba/F3 cells harboring native or T315I mutated Bcr-Abl constructs were treated with GNF-2 and AKIs. We monitored the effect of GNF-2 with AKIs on the proliferation and clonigenicity of the different Ba/F3 cells. In addition, we monitored the auto-phosphorylation activity of Bcr-Abl and JAK2 in cells treated with GNF-2 and AKIs. RESULTS: In this study, we report a cooperation between AKIs and GNF-2 in inhibiting proliferation and clonigenicity of Ba/F3 cells carrying T315I mutated Bcr-Abl. Interestingly, cooperation was most evident between Dasatinib and GNF-2. Furthermore, we showed that GNF-2 was moderately active in inhibiting the activity of JAK2 kinase, and presence of AKIs augmented GNF-2 activity. CONCLUSIONS: Our data illustrated the ability of allosteric inhibitors such as GNF-2 to cooperate with AKIs to overcome T315I mutation by Bcr-Abl-independent mechanisms, providing a possibility of enhancing AKIs efficacy and overcoming resistance in Ph+ leukemia cells.


Assuntos
Antineoplásicos/farmacologia , Proteínas de Fusão bcr-abl/genética , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Pirimidinas/farmacologia , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Quimioterapia Combinada/métodos , Genes abl , Humanos , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Mutação/efeitos dos fármacos , Inibidores de Proteínas Quinases/uso terapêutico , Pirimidinas/uso terapêutico
5.
BMC Cancer ; 12: 411, 2012 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-22985168

RESUMO

BACKGROUND: Chronic myelogenous leukemia (CML) and Philadelphia chromosome-positive (Ph+) acute lymphatic leukemia (Ph + ALL) are caused by the t(9;22), which fuses BCR to ABL resulting in deregulated ABL-tyrosine kinase activity. The constitutively activated BCR/ABL-kinase "escapes" the auto-inhibition mechanisms of c-ABL, such as allosteric inhibition. The ABL-kinase inhibitors (AKIs) Imatinib, Nilotinib or Dasatinib, which target the ATP-binding site, are effective in Ph + leukemia. Another molecular therapy approach targeting BCR/ABL restores allosteric inhibition. Given the fact that all AKIs fail to inhibit BCR/ABL harboring the 'gatekeeper' mutation T315I, we investigated the effects of AKIs in combination with the allosteric inhibitor GNF2 in Ph + leukemia. METHODS: The efficacy of this approach on the leukemogenic potential of BCR/ABL was studied in Ba/F3 cells, primary murine bone marrow cells, and untransformed Rat-1 fibroblasts expressing BCR/ABL or BCR/ABL-T315I as well as in patient-derived long-term cultures (PDLTC) from Ph + ALL-patients. RESULTS: Here, we show that GNF-2 increased the effects of AKIs on unmutated BCR/ABL. Interestingly, the combination of Dasatinib and GNF-2 overcame resistance of BCR/ABL-T315I in all models used in a synergistic manner. CONCLUSIONS: Our observations establish a new approach for the molecular targeting of BCR/ABL and its resistant mutants using a combination of AKIs and allosteric inhibitors.


Assuntos
Proteínas de Fusão bcr-abl/antagonistas & inibidores , Proteínas de Fusão bcr-abl/genética , Mutação , Inibidores de Proteínas Quinases/farmacologia , Regulação Alostérica/efeitos dos fármacos , Animais , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Transformação Celular Neoplásica/efeitos dos fármacos , Transformação Celular Neoplásica/genética , Células Cultivadas , Ensaio de Unidades Formadoras de Colônias , Dasatinibe , Feminino , Expressão Gênica , Células-Tronco Hematopoéticas/metabolismo , Humanos , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Camundongos , Pirimidinas/farmacologia , Tiazóis/farmacologia
6.
Int J Med Mushrooms ; 13(1): 19-25, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22135900

RESUMO

Breast cancer is the most commonly diagnosed cancer among women. Currently, there is no effective therapy for malignant estrogen-independent breast cancer. In our study, we used hydrogen peroxide, a well-known strong oxidative reagent capable of activating the nuclear factor kappa B (NF-kappaB) transcription factor. The IC50 value of the culinary-medicinal Shaggy Inc Cap mushroom Coprinus comatus culture liquid crude extract on MCF7 cell viability was found to be as low as 76 microg/mL, and the IC50 value of C. comatus ethyl acetate extract was only 32 microg/ mL. Our results also showed that both extracts significantly affected IkappaBalpha phosphorylation in a dose-dependent manner. The effect of ethyl acetate extract was comparable to the effect of curcumin, a known NF-kappaB pathway inhibitor, and seemed to be the most active inhibitor of H2O2-dependent IkappaBalpha phosphorylation. In addition, the data obtained showed that only ethyl acetate extract inhibited the activity of IKK complex, at close to 90% as compared to the control of the untreated sample. These results suggest that C. comatus contains potent compounds capable of inhibiting NF-kappaB function and also possibly acts as an antitumor agent.


Assuntos
Misturas Complexas/farmacologia , Coprinus/química , Peróxido de Hidrogênio/farmacologia , Quinase I-kappa B/efeitos dos fármacos , Proteínas I-kappa B/efeitos dos fármacos , NF-kappa B/efeitos dos fármacos , Acetatos/química , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular , Misturas Complexas/isolamento & purificação , Relação Dose-Resposta a Droga , Feminino , Humanos , Quinase I-kappa B/antagonistas & inibidores , Quinase I-kappa B/metabolismo , Proteínas I-kappa B/metabolismo , Concentração Inibidora 50 , Inibidor de NF-kappaB alfa , NF-kappa B/antagonistas & inibidores , NF-kappa B/metabolismo , Fosforilação/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo
7.
Mol Biol Rep ; 37(8): 3801-12, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20224909

RESUMO

Nitric oxide (NO) is a gaseous, radical molecule that plays a role in various physiological processes. Previously, we reported that transduction of murine colon cancer cells (MC38) with herpes simplex virus thymidine kinase (HSV-tk) gene resulted in a significant over-expression of cyclooxygenase-2 (COX-2) and activation of NF-kB pathway. In this study we show that TNFα, but not LPS, was significantly able to stimulate the production of NO in HSV-tk transduced 9L glioblastoma cell lines, mediated by the up-regulation of iNOS transcript and iNOS protein. The TNFα-induced up-regulation of iNOS expression was mediated by MAPK and NF-κB signaling pathways as revealed by using selective pharmaceutical inhibitors. A culture liquid extract of the edible and medicinal mushroom Marasmius oreades that was previously shown to inhibit iNOS expression in MCF-7 was utilized to prepare fractions and evaluate their ability to affect TNFα-induced iNOS expression in HSV tk transduced 9L cell lines. While most of the tested fractions were shown to inhibit TNFα-induced iNOS expression, they targeted different signaling pathways in a selective fashion. Here, we report that fraction SiSiF1 interfered with IKBα phosphorylation and consequently interfered with NF-κB activation pathway. SiSiF1 showed minimal interference with the phosphorylation of p38 and JNK proteins. In contrast, fraction SiSiF3 selectively inhibited the phosphorylation of p38 and fractions SiSiF4 and SiSiF5 selectively inhibited the phosphorylation of JNK with no observed effect against IKBα and p38 phosphorylation. Our data illustrate the complexity of iNOS regulation in HSV tk transduced 9L cell lines and also the richness of natural products with bioactive substances that may act synergistically through different signaling pathways to affect iNOS gene expression.


Assuntos
Glioblastoma/enzimologia , Proteínas Quinases Ativadas por Mitógeno/metabolismo , NF-kappa B/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Timidina Quinase/metabolismo , Transdução Genética , Fator de Necrose Tumoral alfa/farmacologia , Animais , Extratos Celulares/farmacologia , Linhagem Celular Tumoral , Fracionamento Químico , Vetores Genéticos/genética , Glioblastoma/patologia , Marasmius/química , Óxido Nítrico/metabolismo , Nitritos/metabolismo , Ratos , Simplexvirus/enzimologia
8.
J Cancer ; 8(19): 3952-3968, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29187870

RESUMO

Philadelphia chromosome-positive (Ph+) leukemia is characterized by reciprocal translocation between chromosomes 9 and 22. The resultant BCR/ABL fusion protein displays constitutive tyrosine kinase activity, leading to the induction of aberrant proliferation and neoplastic transformation. The bone marrow (BM) microenvironment is tumor-promoting, and contributes to disease recurrence in Ph+ leukemia. Activity in the BM microenvironment is mediated by several cellular compartments, extracellular matrix, various soluble factors including transforming growth factor beta 1 (TGF-ß1), and the hypoxic conditions in the BM niche. TGF-ß1 is released during bone remodeling and plays a role in maintaining leukemic stem cells, as well as being implicated in the epithelial-mesenchymal transition (EMT) process in most solid tumors. Although EMT is largely implicated in epithelial tumors, recent findings argue for an EMT-like process in leukemia as well. The surface receptor CD44 is involved in cell adhesion, cell migration, and homing of normal and malignant hematopoietic stem cells. Elevation of CD44 expression is considered a marker for a worse prognosis in most hematological malignancies. We explored the functions of Snail and Twist1 in Ph+ leukemia. We showed that ectopic expression of Snail and, to a lesser extent, Twist1, upregulates CD44 expression that is ß-catenin-dependent. Moreover, the presence of Snail or Twist1 partially blocked phorbol 12-myristate 13-acetate-induced megakaryocyte differentiation, while that of Twist significantly altered imatinib-induced erythroid differentiation. Thus EMT modulators affected proliferation, CD44 gene expression and differentiation ability of Ph+ leukemia cells.

9.
ACS Omega ; 2(8): 4398-4410, 2017 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-31457731

RESUMO

Protein kinases are fundamental within almost all cellular signal transduction networks. Among these, Bruton's tyrosine kinase (Btk), which belongs to the Tec family of proteins, plays an imperative part in B-cell signaling. Owing to its role, Btk has been established as an important therapeutic target for a vast range of disorders related to B-cell development and function, such as the X-linked agammaglobulinemia, various B-cell malignancies, inflammation, and autoimmune diseases. Herein, using computer-based screening of a library of 20 million small molecules, we identified a small molecule capable of directly binding the Btk kinase domain. On the basis of this hit compound, we conducted a focused structure-similarity search to explore the effect of different chemical modifications on binding toward Btk. This search identified the molecule N2,N6-bis(2,3-dihydrobenzo[b][1,4]dioxin-6-yl)-9H-purine-2,6-diamine as a potent inhibitor of Btk. The latter small molecule binds Btk with a dissociation constant of 250 nM and inhibits Btk activity both in vitro and in-cell.

10.
SAGE Open Med ; 2: 2050312114546924, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-26770737

RESUMO

Cancer is a multifactorial disease that arises as a consequence of alterations in many physiological processes. Recently, hallmarks of cancer were suggested that include sustaining proliferative signaling, evading growth suppressors, resisting cell death, enabling replicative immortality, inducing angiogenesis, and activating invasion and metastasis, along with two emerging hallmarks including reprogramming energy metabolism and escaping immune destruction. Treating multifactorial diseases, such as cancer with agents targeting a single target, might provide partial treatment and, in many cases, disappointing cure rates. Epidemiological studies have consistently shown that the regular consumption of fruits and vegetables is strongly associated with a reduced risk of developing chronic diseases, such as cardiovascular diseases and cancer. Since ancient times, plants, herbs, and other natural products have been used as healing agents. Moreover, the majority of the medicinal substances available today have their origin in natural compounds. Traditionally, pharmaceuticals are used to cure diseases, and nutrition and herbs are used to prevent disease and to provide an optimal balance of macro- and micro-nutrients needed for good health. We explored the combination of natural products, dietary nutrition, and cancer chemotherapeutics for improving the efficacy of cancer chemotherapeutics and negating side effects.

11.
Int J Mol Med ; 25(3): 421-32, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20127048

RESUMO

Nitric oxide (NO) is a radical molecule produced by iNOS and plays a role in various physiological and pathophysiological conditions including inflammatory diseases and cancer. In the present study, organic extract of Daedalea gibbosa was effective in inhibiting NO and PGE2 production in RAW 264.7 cells. The extract of D. gibbosa was chemically fractionated leading to the isolation of three active fractions (F5-F7) that were effective in inhibiting NO and iNOS production. In addition, F6 and F7 significantly inhibited the iNOS transcript, while F5 did not cause a reduction in the iNOS transcript. Furthermore, the active fractions showed a differential effect on levels of phospho-p38, phospho-JNK, and phospho-IKBalpha. Phopsho-p38 was moderately inhibited by F5 and only F7 was significantly active in inhibiting phospho-IKBalpha. Interestingly, all active fractions significantly enhanced levels of phospho-JNK. In addition, the three active fractions also showed differential inhibitory effects on NF-kappaB DNA binding activity.


Assuntos
Agaricales/química , Lipopolissacarídeos/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , NF-kappa B/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Animais , Linhagem Celular , Dinoprostona/biossíntese , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Macrófagos/citologia , Camundongos , Análise em Microsséries , Óxido Nítrico/biossíntese , Óxido Nítrico Sintase Tipo II/genética , Regiões Promotoras Genéticas
12.
Mol Biol Rep ; 36(4): 737-44, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18386159

RESUMO

The activation pathway of nuclear transcription factor kappa B (NF-kappaB) is a key mechanism for the progression of carcinogenesis at the molecular level. NF-kappaB is related to the promotion of cell proliferation, inhibition of apoptosis, and the enhancement of tumor metastasis and angiogenesis. Marasmius oreades culture liquid extract, which was previously shown to affect NF-kappaB activation through inhibition of the phosphorylation of the inhibitory protein kappa B (IkappaBalpha), was subjected to liquid chromatography in order to investigate the specific mechanism of action of the active moieties present in the extract. Four fractions were obtained and tested for their abilities to block NF-kappaB activation pathway at different molecular levels. All fractions showed an anti-proliferative potential with no apparent cytotoxicity on MCF7 breast cancer cell line. Two out of the four fractions strongly affected the phosphorylation of IkappaBalpha and the NF-kappaB reporter activity in MCF7 breast cancer cell line. In addition, these two fractions prevented the p65 nuclear translocation and seemed to interfere with the IkappaB kinase (IKK) activation pathway. The IKK pathway is a major cellular signaling pathway set at a crossroad leading to NF-kappaB activation by a variety of stimuli. Also, these two fractions induced apoptosis of MCF7 cells. This study adds additional valuable data to our knowledge on the anticancer potential of fungal metabolites. It is the first report showing the medicinal value of M. oreades as a natural source of low-molecular-weight bioactive substances able to affect the process of tumorogenesis through the direct blockage of NF-kappaB activation at the IKK level.


Assuntos
Quinase I-kappa B/antagonistas & inibidores , Quinase I-kappa B/metabolismo , Marasmius/química , NF-kappa B/antagonistas & inibidores , NF-kappa B/metabolismo , Transdução de Sinais/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Ativação Enzimática , Humanos , Fosforilação/efeitos dos fármacos , Transporte Proteico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA