RESUMO
This study investigated the pathogenic potential of Pseudomonas protegens on mosquito larvae of the two species Culex pipiens and Aedes albopictus, representing major threats for disease transmission in the Mediterranean area and worldwide. The bacterium achieved to kill over 90% of the mosquito larvae within 72 h after exposition to a bacterial concentration of 100 million CFU/ml. These lethal effects were concentration dependent and a significantly higher susceptibility was associated with younger larvae of both mosquito species. Significant slowdown of immature (larval and pupal) development and decrease in adult emergence rate after treatment with sub-lethal doses of the bacterium were also detected. This study reports for the first time the insecticidal activity of a root-associated biocontrol bacterium against aquatic mosquito larvae.
Assuntos
Agentes de Controle Biológico , Culicidae , Larva , Pseudomonas , Animais , Aedes/crescimento & desenvolvimento , Aedes/microbiologia , Culex/crescimento & desenvolvimento , Culex/microbiologia , Larva/crescimento & desenvolvimento , Larva/microbiologia , Pseudomonas/patogenicidade , Culicidae/crescimento & desenvolvimento , Culicidae/microbiologiaRESUMO
S-layers are involved in the adaptation of bacteria to the outside environment and in pathogenesis, often representing special virulence factors. Vegetative cells of the entomopathogenic bacterium Brevibacillus laterosporus are characterized by an overproduction of extracellular surface layers that are released in the medium during growth. The purpose of this study was to characterize cell wall proteins of this bacterium and to investigate their involvement in pathogenesis. Electron microscopy observations documented the presence of multiple S-layers, including an outermost (OW) and a middle (MW) layer, in addition to the peptidoglycan layer covering the plasma membrane. After identifying these proteins (OWP and MWP) by mass spectrometry analyses, and determining their gene sequences, the cell wall multilayer-released fraction was successfully isolated and used in insect bioassays alone and in combination with bacterial spores. This study confirmed a central role of spores in bacterial pathogenicity to insects but also detected a significant virulence associated with fractions containing released cell wall multilayer proteins. Taken together, S-layer proteins appear to be part of the toxins and virulence factors complex of this microbial control agent of invertebrate pests.
Assuntos
Bacillus , Brevibacillus , Animais , Fatores de Virulência/metabolismo , Insetos/microbiologiaRESUMO
The susceptibility of the green lacewing Chrysoperla carnea to the soil-dwelling bacterial entomopathogen Pseudomonas protegens CHA0 was investigated in this study. Laboratory bioassays were conducted on larval instars exposed to different bacterial concentrations by both direct feeding and indirectly by offering a pre-treated insect prey. Potential toxicity was assessed through dose-response bioassays, while possible sublethal effects were evaluated on immature development time and the reproductive performance (fecundity) of adults emerging from treated juveniles. As a result, no significant effects were observed on larval survival and development in a comparison between treated and untreated (control) groups. No significant impact on adult emergence and no detrimental effects on female fecundity were detected. Everything considered, the use of P. protegens in the agroecosystem appears to be compatible with chrysopids.
Assuntos
Insetos , Pseudomonas , Animais , Feminino , Insetos/fisiologia , Larva , SoloRESUMO
The biocidal potential of Brevibacillus laterosporus against mosquitoes of major medical importance has been widely documented, but its effects on non-target invertebrates are still poorly known. In this study, we determined the lethal and sub-lethal effects of B. laterosporus strain UNISS 18, an entomopathogenic bacterium known for its effectiveness against synanthropic Diptera, on the larvae of the Asian tiger mosquito Aedes albopictus, a vector of several pathogens to humans. Moreover, we compared the larvicidal activity with the lethal action on the invasive snail Physella acuta and on two non-target water-dwelling species: the mayfly Cloeon dipterum, and the harlequin fly Chironomus riparius. B. laterosporus exhibited significant lethal effects on all the tested species with a concentration-dependent activity. However, the susceptibility varied among species, with a higher susceptibility of Ae. albopictus (LC50 = 0.16 × 107 spores mL-1) than the other species (LC50 = 0.31, 0.33, and 0.30 × 107 spores mL-1 for C. dipterum, C. riparius, and P. acuta, respectively). While 1st instar mosquito larvae were very susceptible to the bacterial infection, no effects on preimaginal development stages and adult emergence were observed at sub-lethal spores' concentrations. Even if the efficacy of B. laterosporus against Ae. albopictus and the invasive freshwater snail P. acuta is promising for their control, the susceptibility of non-target beneficial aquatic insects, highlights the need of accurate evaluations before applying B. laterosporus for pest management in water environments.
Assuntos
Aedes/microbiologia , Agentes de Controle Biológico/farmacologia , Agentes de Controle Biológico/toxicidade , Brevibacillus/fisiologia , Invertebrados/efeitos dos fármacos , Aedes/efeitos dos fármacos , Animais , Organismos Aquáticos/efeitos dos fármacos , Invertebrados/microbiologiaRESUMO
The safety of the entomopathogenic bacterium Brevibacillus laterosporus for the natural insect predator Chrysoperla agilis was evaluated in this study. For this purpose, laboratory bioassays were conducted exposing different larval instars and adults of the chrysopid to bacterial spore preparations, in order to evaluate the possible effects on survival, longevity, immature development, and adult reproductive performance. The sub-lethal effects were investigated by feeding the bacterium directly to adults and larvae of C. agilis or to mealworm beetles (Tenebrio molitor) used as hosts for chrysopids (tritrophic interaction). Direct feeding of B. laterosporus spores to different lacewing larvae instars and to adults did not cause mean mortality levels significantly different from untreated control, and slight though not significant effects of treatments were generally observed on insect longevity, development, fecundity and egg hatching. In the case of lacewing larvae feeding on treated mealworm beetles, adult emergence percentage was reduced approximately 12%, in comparison with untreated control. Based on these results, the use of B. laterosporus for pest management in the agroecosystem, appears to be compatible with chrysopids.
Assuntos
Agentes de Controle Biológico/efeitos adversos , Brevibacillus/fisiologia , Controle de Insetos , Insetos/microbiologia , Controle Biológico de Vetores , Tenebrio/microbiologia , Animais , Feminino , Insetos/crescimento & desenvolvimento , Larva/crescimento & desenvolvimento , Larva/microbiologia , Masculino , Tenebrio/crescimento & desenvolvimentoRESUMO
In order to increase our understanding of the insecticidal potential of the entomopathogenic bacterium Brevibacillus laterosporus strain UNISS 18 against insect pests, investigations were conducted on a selection of dipteran species including fruit flies, house flies, blow flies, and mosquitoes, characterized by adaptations to very diverse habitats. According to lethal concentration (LC50) values, the common house mosquito Culex pipiens (LC50 = 0.10 × 106 spores/mL) and the yellow fever mosquito Aedes aegypti (LC50 = 0.18 × 106 spores/mL) were significantly more susceptible than the flies. The blow flies were the second taxon in term of susceptibility to B. laterosporus spores, with a higher mortality in Calliphora vomitoria (LC50 = 78.84 × 106 spores/mL) than Lucilia caesar (LC50 = 148.30 × 106 spores/mL). The effectiveness of B. laterosporus spores was reduced by half in the house fly Musca domestica (LC50 = 82.41 × 106 spores/mL). The lowest susceptibility was observed in the fruit flies, among which the spotted wing drosophila (SWD), Drosophila suzukii, was the most susceptible (LC50 = 217.51 × 106 spores/mL) in comparison with the medfly Ceratitis capitata and the olive fly Bactrocera oleae (LC50 = 2567.32 and 2567.36 × 106 spores/mL, respectively). The present study demonstrated that significantly different degrees of susceptibility are associated with diverse dipteran species including plant and animal parasites, and we suggest that B. laterosporus established different relationships with dipteran species in different ecosystems.
Assuntos
Agentes de Controle Biológico/farmacologia , Brevibacillus/química , Dípteros , Controle Biológico de Vetores , Animais , Dípteros/microbiologia , Controle de Insetos , Inseticidas/farmacologiaRESUMO
The identification of the ubiquitous spore-forming bacterium Brevibacillus laterosporus, whose interest in pharma, agriculture, and other industrial sectors is raising, mostly relies on 16S ribosomal RNA gene sequence analysis. However, due to bacterial gene homology, this method appears insufficient for a proper discrimination of this species, so that the availability of other target genes is necessary. Leveraging the morphological and genetic feature uniqueness of B. laterosporus, a sensitive and reliable detection and quantification method based on polymerase chain reaction (PCR) and quantitative PCR assays, respectively, was developed. Targeting a highly conserved spore surface protein-related gene, B. laterosporus could be easily found in different matrices including soil, food, and insect body. Primer set selectivity was confirmed to be very specific and no false positives or negatives were observed using DNA of different bacterial species as a template. The method developed is also suitable for the rapid identification of newly isolated B. laterosporus strains.
Assuntos
Técnicas Bacteriológicas/métodos , Brevibacillus/isolamento & purificação , Reação em Cadeia da Polimerase , Animais , Brevibacillus/genética , Brevibacillus/crescimento & desenvolvimento , Contagem de Colônia Microbiana , DNA Bacteriano/genética , Microbiologia Ambiental , Genes Bacterianos/genética , Insetos/microbiologia , Sensibilidade e Especificidade , Análise de Sequência de DNARESUMO
The pathogenic action of the bacterium Brevibacillus laterosporus against invertebrates involves a toxin-mediated mechanism. Several studies, conducted with specific strains against diverse targets, suggested the implication of different toxins. Recent genome sequencing and annotation of some insecticidal strains revealed several putative virulence factors highly conserved in this species. After determining the pathogenicity of strain UNISS 18 against different Lepidopteran and Dipteran larvae, in this study we have investigated the actual expression of genes encoding for enzymes (i.e., chitinases, proteases), toxins, and other virulence factors, either in vitro and in vivo at the transcriptional level. Selected genes encode for two chitinases, a collagenase-like protease, a GlcNAc-binding protein, two protective antigen proteins, a bacillolysin, a thermophilic serine proteinase, two spore surface proteins, an insecticidal toxin homologous to Cry75Aa. All target genes were well expressed in pure bacterial cultures with significant differences between bacterial growth phases. Their expression level was generally enhanced in the bacterial population developing in the insect body cavity, compared with pure culture. The expression of certain genes increased substantially over time after insect inoculation. These results support a complex mechanism of action leveraging a variety of available virulence factors, and can also explain the ability of this bacterial species to act against diverse invertebrate targets.
Assuntos
Toxinas Bacterianas , Brevibacillus/patogenicidade , Controle Biológico de Vetores/métodos , Fatores de Virulência , Animais , Dípteros/parasitologia , Mariposas/parasitologiaRESUMO
The insect midgut represents the primary site of action of the entompathogenic bacterium Brevibacillus laterosporus. While most studies on this microorganism focus on the identification and characterization of possible virulence factors and toxins, little is known about the insect immune defense mechanisms that are activated against this pathogen. In this study we have investigated the local immune response of different house fly stages to B. laterosporus at the transcriptional level, and we tested the hypothesis that an improvement in entomopathogenicity can be achieved by impairing host innate immunity. Gene expression analyses showed that immediately after spore ingestion (6-12h) both larvae and adults increased the transcription rate of immune related genes in the midgut tissues, with special regard to those encoding for the main house fly antimicrobial peptides (AMPs) (i.e., attacin, cecropin, defensin, diptericin, domesticin, muscin) and for prophenoloxydase that is normally involved in the cascade of events leading to the generation of reactive oxygen species (ROS) and other factors with antibacterial properties. In experiments evaluating the use of an immunosuppressive agent to enhance the virulence of B. laterosporus against adult house flies, a significant downregulation of the same genes was observed 12-24h after the administration of sub-lethal doses of the botanical compound azadirachtin. Consequently, a significant increase in B. laterosporus entomopathogenic action was observed when flies were preliminarily or simultaneously exposed to a sub-lethal dose of azadirachtin. These results provide an important contribution to the prospect of employing immune-impairing tools to implement pest management strategies.
Assuntos
Brevibacillus/patogenicidade , Interações Hospedeiro-Patógeno/imunologia , Moscas Domésticas/imunologia , Moscas Domésticas/microbiologia , Animais , Brevibacillus/imunologia , Sistema Digestório/imunologia , Sistema Digestório/microbiologia , Controle Biológico de Vetores/métodos , Virulência/imunologiaRESUMO
Brevibacillus laterosporus is an entomopathogenic bacterium showing varying degrees of virulence against diverse insect pests. Conversely, it is regarded as a beneficial component of the intestinal flora in different animals and in some insect species including the honeybee. B. laterosporus was detected through a species-specific PCR assay in the body of different insects, including Apis mellifera and Bombus terrestris. A strain isolated from a honeybee worker was pathogenic to the house fly Musca domestica, thus supporting the development of either mutualistic or pathogenic interactions of this bacterium with diverse insect species, as the result of a coevolutionary process.
Assuntos
Abelhas/parasitologia , Brevibacillus , Infecções por Bactérias Gram-Positivas/veterinária , Moscas Domésticas/parasitologia , Animais , Controle Biológico de Vetores , Reação em Cadeia da PolimeraseRESUMO
The lethal and sub-lethal effects of sporulated cultures of a novel Bacillus cereus sensu lato strain lacking detectable cry genes and identified through morphological and genetic analyses, have been studied on the Mediterranean fruit fly Ceratitis capitata. The lethal effects on young larvae were concentration dependent, with a median lethal concentration (LC50) of 4.48 × 10(8)spores/g of diet. Sporulated cultures of this strain significantly extended development time and reduced immature survival, and the size of emerging fly adults. Besides spores, the toxicity has been associated to the insoluble extra-spore fraction characterized through a proteomic approach. The profile of the extra-spore protein fraction (ES) showed major protein bands within the 35-65 kDa range. The results of mass spectrometry analysis highlighted the presence of putative virulence factors, including members of protein families previously associated to the insecticidal action of other microbial entomopathogens. These proteins include metalloproteases, peptidases and other enzymes.
Assuntos
Bacillus cereus/fisiologia , Ceratitis capitata/microbiologia , Animais , Bacillus cereus/patogenicidade , Proteínas de Bactérias/química , Proteínas de Bactérias/isolamento & purificação , Proteínas de Bactérias/fisiologia , Interações Hospedeiro-Patógeno , Larva/microbiologia , Espectrometria de Massas , Virulência , Fatores de Virulência/química , Fatores de Virulência/isolamento & purificação , Fatores de Virulência/fisiologiaRESUMO
The need to reduce the impact of plant protection products on agroecosystems fosters the use of augmentative biological control involving the release of beneficial species into the field, the employment of entomopathogenic microbials, and the protection of naturally occurring biocontrol agents. This study aimed to investigate the compatibility of the entomopathogenic fungus Beauveria bassiana with the generalist insect predator Chrysoperla lucasina, in comparative experiments involving a laboratory-reared and a wild chrysopid strain. The larvae of the predators were exposed to different concentrations of fungal conidia up to a concentration of 107 conidia/mL by contact and ingestion. The treated insects showed only slight differences in terms of survival and immature development time compared to the untreated control insects. A significant decrease in the proportion of the male adults of C. lucasina that emerged from the laboratory-reared larvae that were exposed to higher concentrations of the fungus suggested a potentially different susceptibility between the sexes. A slightly lower adult emergence rate was observed in the wild strain, while no significant differences were recorded in the adult reproductive performance. These findings indicate that the B. bassiana strain ATCC 74040, at concentrations commonly used in the field, did not pose a significant risk to C. lucasina and can be safely used in combination with this predator for sustainable pest management.
RESUMO
The pathological and histopathological course caused by Brevibacillus laterosporus on house fly larvae has been investigated conducting observations on insect behavior and midgut ultrastructure. After dissection and fixation, gut tissues were analyzed under transmission electron microscopy (TEM) in order to compare in vivo-treated and non-treated (control) fly specimens. Treated larvae showed extensively reduced feeding and growth rate, then became sluggish and died within 72 h. A progressive midgut epithelium deterioration was observed in treated larvae, compared to the control. Ultrastructural changes consisted of microvilli disruption, cytoplasm vacuolization and general disorganization, endoplasmic reticulum deformation, mitochondria alteration. Deterioration became progressively more dramatic until the infected cells released their content into the gut lumen. Disruption was associated also with midgut muscular sheath and connective tissue. These ultrastructural changes are similar to those widely described for other entomopathogenic bacteria, such as Bacillus thuringiensis, against different insect species. The rapid disruption of cellular fine structure supports a hypothesis based on an interaction of toxins with the epithelial cell membranes reminiscent of the specific B. thuringiensis δ-endotoxins mechanism of action on other insect targets.
Assuntos
Brevibacillus/fisiologia , Moscas Domésticas/ultraestrutura , Animais , Brevibacillus/ultraestrutura , Moscas Domésticas/crescimento & desenvolvimento , Moscas Domésticas/microbiologia , Larva/crescimento & desenvolvimento , Larva/microbiologia , Larva/ultraestruturaRESUMO
BACKGROUND: The bioinsecticidal action of entomopathogenic nematodes (EPNs) typically relies on their symbiosis with core bacteria. However, recent studies highlighted the possible involvement of other noncore species. We have recently isolated a novel Pseudomonas protegens strain as a major agent of septicaemia in larvae of the wax moth, Galleria mellonella, infected with a soil-dwelling Steinernema feltiae strain. The actual role of this bacterium in entomopathogenesis was investigated. RESULTS: The association of P. protegens with nematodes appeared to be robust, as supported by its direct and repeated isolation from both nematodes and insect larvae infected for several consecutive generations. The bacterium appeared to be well-adapted to the insect haemocoel, being able to proliferate rapidly after the injection of even a small amount of living cells [100 colony forming units (CFU)] to a larva, causing its fast death. The bacterium also was able to act by ingestion against G. mellonella larvae [median lethal concentration (LC50 ) = 4.0 × 107 CFU mL-1 ], albeit with a slower action, which supports the involvement of specific virulence factors (e.g. chitinases, Fit toxin) to overcome the intestinal barrier to the haemocoel. Varying levels of bacterial virulence were observed on diverse target Diptera and Lepidoptera. CONCLUSION: The soil-dwelling bacterium P. protegens appears to have evolved its own potential as a stand-alone entomopathogen, yet the establishment of an opportunistic association with entomoparasitic nematodes would represent a special competitive advantage. This finding contributes to a deeper understanding of the nematode-bacteria biocontrol agent complex and the deriving paradigm of their use as biological control agents. © 2022 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Assuntos
Mariposas , Rabditídios , Animais , Controle Biológico de Vetores , Mariposas/parasitologia , Insetos , Larva/parasitologia , Solo/parasitologia , BactériasRESUMO
The bioinsecticidal action of Pseudomonas protegens has so far been reported against some target insects, and the mode of action remains unclear. In this study, the pathogenicity potential of a recently isolated strain of this bacterial species against fly larvae of medical and veterinary interest was determined. Preliminary experiments were conducted to determine the biocidal action by ingestion against Musca domestica and Lucilia caesar larvae, which highlighted a concentration-dependent effect, with LC50 values of 3.6 and 2.5 × 108 CFU/mL, respectively. Bacterial septicaemia was observed in the body of insects assuming bacterial cells by ingestion. Such rapid bacterial reproduction in the hemolymph supports a toxin-mediated mechanism of action involving the intestinal barrier overcoming. In order to gain more information on the interaction with the host, the relative time-course expression of selected P. protegens genes associated with virulence and pathogenicity, was determined by qPCR at the gut level during the first infection stage. Among target genes, chitinase D was the most expressed, followed by pesticin and the fluorescent insecticidal toxin fitD. According to our observations and to the diversity of metabolites P. protegens produces, the pathogenic interaction this bacterium can establish with different targets appears to be complex and multifactorial.
Assuntos
Calliphoridae , Moscas Domésticas , Controle de Insetos , Pseudomonas/química , Animais , Calliphoridae/crescimento & desenvolvimento , Moscas Domésticas/crescimento & desenvolvimento , Larva/crescimento & desenvolvimentoRESUMO
The broad-spectrum insecticidal activity of Beauveria bassiana strain ATCC 74040 is well documented. The whole-genome sequence of this strain is reported here, revealing a plethora of genes related to its insecticidal potential and providing new insights on the mechanism of action.
RESUMO
Kpkt is a yeast killer toxin, naturally produced by Tetrapisispora phaffii, with possible applications in winemaking due to its antimicrobial activity on wine-related yeasts including Kloeckera/Hanseniaspora, Saccharomycodes and Zygosaccharomyces. Here, Kpkt coding gene was expressed in Komagataella phaffii (formerly Pichia pastoris) and the bioreactor production of the recombinant toxin (rKpkt) was obtained. Moreover, to produce a ready-to-use preparation of rKpkt, the cell-free supernatant of the K. phaffii recombinant killer clone was 80-fold concentrated and lyophilized. The resulting preparation could be easily solubilized in sterile distilled water and maintained its killer activity for up to six months at 4 °C. When applied to grape must, it exerted an extensive killer activity on wild wine-related yeasts while proving compatible with the fermentative activity of actively growing Saccharomyces cerevisiae starter strains. Moreover, it displayed a strong microbicidal effect on a variety of bacterial species including lactic acid bacteria and food-borne pathogens. On the contrary it showed no lethal effect on filamentous fungi and on Ceratitis capitata and Musca domestica, two insect species that may serve as non-mammalian model for biomedical research. Based on these results, bioreactor production and lyophilization represent an interesting option for the exploitation of this killer toxin that, due to its spectrum of action, may find application in the control of microbial contaminations in the wine and food industries.
Assuntos
Fatores Matadores de Levedura/farmacologia , Vinho/microbiologia , Anti-Infecciosos/metabolismo , Anti-Infecciosos/farmacologia , Reatores Biológicos/microbiologia , Fermentação , Indústria Alimentícia , Microbiologia de Alimentos , Liofilização , Fatores Matadores de Levedura/biossíntese , Viabilidade Microbiana , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/farmacologia , Leveduras/efeitos dos fármacosRESUMO
In this study the resistance opposed to Tineola bisselliella larvae by a commercial sheep-wool panel incorporating borate salts was determined under laboratory conditions. The susceptibility of clothes moth larvae to different concentrations of disodium octaborate tetrahydrate (DOT) incorporated in pure wool was also determined. The commercial wool panel showed a remarkable resistance to moth attack compared with pure untreated wool, and the damage to panel samples was limited to their surface. As a result of bioassays exposing larvae to pure wool treated with DOT, a concentration dependent effect was observed, achieving a good efficacy at an application rate between 40-100 mg/mL. This study highlights the need to protect wool-based construction material with appropriate insecticidal (antifeedant or repellent) substances and supports the development of eco-sustainable solutions.
RESUMO
An appropriate management strategy of bluetongue vectors should include larvicidal treatments in their larval development sites utilizing active substances with low environmental impact. A selection of biorational insecticides with potential against dipteran larvae was assayed in the laboratory against field collected Culicoides larvae including C. cataneii, C. circumscriptus, and C. imicola, determining their median lethal concentrations in water and mud/water substrate. The efficacy of formulations containing the insect growth regulators pyriproxyfen and cyromazine, the botanical insecticide azadirachtin, and the entomopathogenic bacteria Bacillus thuringiensis israelensis and Brevibacillus laterosporus, was also assessed in field conditions in a comparative study conducted in sheep farm larval development sites, including treatments with the organophosphate temephos. Significant larvicidal properties were associated with the various insecticides evaluated in the laboratory assays and in field trials, although with different levels of effectiveness. While temephos was confirmed to be an effective broad spectrum larvicidal substance, B. laterosporus appeared to be the most effective among entomopathogens, while insect growth regulators combined a good efficacy to a long-lasting residual effect in the field. Everything considered, the use of these biorational insecticides alone or in combination with larval habitat manipulation techniques appears to be a promising method to complement integrated biting midge management programs.
Assuntos
Ceratopogonidae/efeitos dos fármacos , Inseticidas/farmacologia , Animais , Ecossistema , Controle de Insetos/métodos , Insetos Vetores/efeitos dos fármacos , Insetos Vetores/crescimento & desenvolvimento , Inseticidas/administração & dosagem , Inseticidas/química , Larva/efeitos dos fármacos , Larva/crescimento & desenvolvimento , Solo/química , Água/químicaRESUMO
The inhibitory action that a Brevibacillus laterosporus strain isolated from the honeybee body causes against the American Foulbrood (AFB) etiological agent Paenibacillus larvae was studied by in-vitro experiments. A protein fraction isolated from B. laterosporus culture supernatant was involved in the observed inhibition of P. larvae vegetative growth and spore germination. As a result of LC-MS/MS proteomic analyses, the bacteriocin laterosporulin was found to be the major component of this fraction, followed by other antimicrobial proteins and substances including lectins, chaperonins, various enzymes and a number of putative uncharacterized proteins. The results obtained in this study highlight the potential of B. laterosporus as a biological control agent for preserving and improving honeybee health.