Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 183
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Nat Immunol ; 24(9): 1487-1498, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37474653

RESUMO

Malaria is caused by Plasmodium species transmitted by Anopheles mosquitoes. Following a mosquito bite, Plasmodium sporozoites migrate from skin to liver, where extensive replication occurs, emerging later as merozoites that can infect red blood cells and cause symptoms of disease. As liver tissue-resident memory T cells (Trm cells) have recently been shown to control liver-stage infections, we embarked on a messenger RNA (mRNA)-based vaccine strategy to induce liver Trm cells to prevent malaria. Although a standard mRNA vaccine was unable to generate liver Trm or protect against challenge with Plasmodium berghei sporozoites in mice, addition of an agonist that recruits T cell help from type I natural killer T cells under mRNA-vaccination conditions resulted in significant generation of liver Trm cells and effective protection. Moreover, whereas previous exposure of mice to blood-stage infection impaired traditional vaccines based on attenuated sporozoites, mRNA vaccination was unaffected, underlining the potential for such a rational mRNA-based strategy in malaria-endemic regions.


Assuntos
Vacinas Antimaláricas , Malária , Animais , Camundongos , Células T de Memória , Malária/prevenção & controle , Fígado , Plasmodium berghei/genética , Linfócitos T CD8-Positivos
2.
Immunity ; 56(3): 592-605.e8, 2023 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-36804959

RESUMO

Plasmodium replicates within the liver prior to reaching the bloodstream and infecting red blood cells. Because clinical manifestations of malaria only arise during the blood stage of infection, a perception exists that liver infection does not impact disease pathology. By developing a murine model where the liver and blood stages of infection are uncoupled, we showed that the integration of signals from both stages dictated mortality outcomes. This dichotomy relied on liver stage-dependent activation of Vγ4+ γδ T cells. Subsequent blood stage parasite loads dictated their cytokine profiles, where low parasite loads preferentially expanded IL-17-producing γδ T cells. IL-17 drove extra-medullary erythropoiesis and concomitant reticulocytosis, which protected mice from lethal experimental cerebral malaria (ECM). Adoptive transfer of erythroid precursors could rescue mice from ECM. Modeling of γδ T cell dynamics suggests that this protective mechanism may be key for the establishment of naturally acquired malaria immunity among frequently exposed individuals.


Assuntos
Eritropoese , Malária Cerebral , Animais , Camundongos , Eritrócitos , Interleucina-17 , Fígado/parasitologia , Camundongos Endogâmicos C57BL , Receptores de Antígenos de Linfócitos T gama-delta , Malária
3.
Immunity ; 51(2): 285-297.e5, 2019 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-31272808

RESUMO

Interactions with the microbiota influence many aspects of immunity, including immune cell development, differentiation, and function. Here, we examined the impact of the microbiota on CD8+ T cell memory. Antigen-activated CD8+ T cells transferred into germ-free mice failed to transition into long-lived memory cells and had transcriptional impairments in core genes associated with oxidative metabolism. The microbiota-derived short-chain fatty acid (SCFA) butyrate promoted cellular metabolism, enhanced memory potential of activated CD8+ T cells, and SCFAs were required for optimal recall responses upon antigen re-encounter. Mechanistic experiments revealed that butyrate uncoupled the tricarboxylic acid cycle from glycolytic input in CD8+ T cells, which allowed preferential fueling of oxidative phosphorylation through sustained glutamine utilization and fatty acid catabolism. Our findings reveal a role for the microbiota in promoting CD8+ T cell long-term survival as memory cells and suggest that microbial metabolites guide the metabolic rewiring of activated CD8+ T cells to enable this transition.


Assuntos
Butiratos/metabolismo , Linfócitos T CD8-Positivos/imunologia , Ácidos Graxos Voláteis/metabolismo , Memória Imunológica , Microbiota/imunologia , Transferência Adotiva , Animais , Antígenos/imunologia , Diferenciação Celular , Células Cultivadas , Glicólise , Humanos , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Oxirredução
4.
Nature ; 594(7863): 413-417, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33981034

RESUMO

Humans and their microbiota have coevolved a mutually beneficial relationship in which the human host provides a hospitable environment for the microorganisms and the microbiota provides many advantages for the host, including nutritional benefits and protection from pathogen infection1. Maintaining this relationship requires a careful immune balance to contain commensal microorganisms within the lumen while limiting inflammatory anti-commensal responses1,2. Antigen-specific recognition of intestinal microorganisms by T cells has previously been described3,4. Although the local environment shapes the differentiation of effector cells3-5 it is unclear how microbiota-specific T cells are educated in the thymus. Here we show that intestinal colonization in early life leads to the trafficking of microbial antigens from the intestine to the thymus by intestinal dendritic cells, which then induce the expansion of microbiota-specific T cells. Once in the periphery, microbiota-specific T cells have pathogenic potential or can protect against related pathogens. In this way, the developing microbiota shapes and expands the thymic and peripheral T cell repertoire, allowing for enhanced recognition of intestinal microorganisms and pathogens.


Assuntos
Células Dendríticas/imunologia , Microbioma Gastrointestinal/imunologia , Linfócitos T/citologia , Linfócitos T/imunologia , Timo/citologia , Timo/imunologia , Envelhecimento/imunologia , Animais , Antígenos de Bactérias/imunologia , Antígenos de Bactérias/metabolismo , Receptor 1 de Quimiocina CX3C/metabolismo , DNA Bacteriano/análise , Células Dendríticas/metabolismo , Escherichia coli/imunologia , Feminino , Masculino , Camundongos , Especificidade de Órgãos , Salmonella/imunologia , Simbiose/imunologia , Timo/metabolismo
5.
Nature ; 586(7828): 248-256, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33028999

RESUMO

Nitrous oxide (N2O), like carbon dioxide, is a long-lived greenhouse gas that accumulates in the atmosphere. Over the past 150 years, increasing atmospheric N2O concentrations have contributed to stratospheric ozone depletion1 and climate change2, with the current rate of increase estimated at 2 per cent per decade. Existing national inventories do not provide a full picture of N2O emissions, owing to their omission of natural sources and limitations in methodology for attributing anthropogenic sources. Here we present a global N2O inventory that incorporates both natural and anthropogenic sources and accounts for the interaction between nitrogen additions and the biochemical processes that control N2O emissions. We use bottom-up (inventory, statistical extrapolation of flux measurements, process-based land and ocean modelling) and top-down (atmospheric inversion) approaches to provide a comprehensive quantification of global N2O sources and sinks resulting from 21 natural and human sectors between 1980 and 2016. Global N2O emissions were 17.0 (minimum-maximum estimates: 12.2-23.5) teragrams of nitrogen per year (bottom-up) and 16.9 (15.9-17.7) teragrams of nitrogen per year (top-down) between 2007 and 2016. Global human-induced emissions, which are dominated by nitrogen additions to croplands, increased by 30% over the past four decades to 7.3 (4.2-11.4) teragrams of nitrogen per year. This increase was mainly responsible for the growth in the atmospheric burden. Our findings point to growing N2O emissions in emerging economies-particularly Brazil, China and India. Analysis of process-based model estimates reveals an emerging N2O-climate feedback resulting from interactions between nitrogen additions and climate change. The recent growth in N2O emissions exceeds some of the highest projected emission scenarios3,4, underscoring the urgency to mitigate N2O emissions.


Assuntos
Óxido Nitroso/análise , Óxido Nitroso/metabolismo , Agricultura , Atmosfera/química , Produtos Agrícolas/metabolismo , Atividades Humanas , Internacionalidade , Nitrogênio/análise , Nitrogênio/metabolismo
6.
Dev Biol ; 508: 38-45, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38224932

RESUMO

Developmental time is a fundamental life history trait that affects the reproductive success of animals. Developmental time is known to be regulated by many genes and environmental conditions, yet mechanistic understandings of how various cellular processes influence the developmental timing of an organism are lacking. The nervous system is known to control key processes that affect developmental time, including the release of hormones that signal transitions between developmental stages. Here we show that the excitability of neurons plays a crucial role in modulating developmental time. Genetic manipulation of neuronal excitability in Drosophila melanogaster alters developmental time, which is faster in animals with increased neuronal excitability. We find that selectively modulating the excitability of peptidergic neurons is sufficient to alter developmental time, suggesting the intriguing hypothesis that the impact of neuronal excitability on DT may be at least partially mediated by peptidergic regulation of hormone release. This effect of neuronal excitability on developmental time is seen during embryogenesis and later developmental stages. Observed phenotypic plasticity in the effect of genetically increasing neuronal excitability at different temperatures, a condition also known to modulate excitability, suggests there is an optimal level of neuronal excitability, in terms of shortening DT. Together, our data highlight a novel connection between neuronal excitability and developmental time, with broad implications related to organismal physiology and evolution.


Assuntos
Proteínas de Drosophila , Drosophila melanogaster , Animais , Drosophila melanogaster/genética , Neurônios/fisiologia , Hormônios , Reprodução , Proteínas de Drosophila/genética
7.
Immunity ; 45(4): 889-902, 2016 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-27692609

RESUMO

In recent years, various intervention strategies have reduced malaria morbidity and mortality, but further improvements probably depend upon development of a broadly protective vaccine. To better understand immune requirement for protection, we examined liver-stage immunity after vaccination with irradiated sporozoites, an effective though logistically difficult vaccine. We identified a population of memory CD8+ T cells that expressed the gene signature of tissue-resident memory T (Trm) cells and remained permanently within the liver, where they patrolled the sinusoids. Exploring the requirements for liver Trm cell induction, we showed that by combining dendritic cell-targeted priming with liver inflammation and antigen recognition on hepatocytes, high frequencies of Trm cells could be induced and these cells were essential for protection against malaria sporozoite challenge. Our study highlights the immune potential of liver Trm cells and provides approaches for their selective transfer, expansion, or depletion, which may be harnessed to control liver infections or autoimmunity.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Memória Imunológica/imunologia , Fígado/imunologia , Malária/imunologia , Animais , Linfócitos T CD8-Positivos/parasitologia , Culicidae , Células Dendríticas/imunologia , Células Dendríticas/parasitologia , Hepatócitos/imunologia , Hepatócitos/parasitologia , Fígado/parasitologia , Hepatopatias/imunologia , Hepatopatias/parasitologia , Vacinas Antimaláricas/imunologia , Camundongos , Plasmodium berghei/imunologia , Esporozoítos/imunologia , Esporozoítos/parasitologia , Vacinação/métodos
8.
Proc Natl Acad Sci U S A ; 119(50): e2214988119, 2022 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-36469784

RESUMO

The mechanisms by which environmentally-induced epiphenotypes are transmitted transgenerationally in mammals are poorly understood. Here we show that exposure of pregnant mouse females to bisphenol A (BPA) results in obesity in the F2 progeny due to increased food intake. This epiphenotype can be transmitted up to the F6 generation. Analysis of chromatin accessibility in sperm of the F1-F6 generations reveals alterations at sites containing binding motifs for CCCTC-binding factor (CTCF) at two cis-regulatory elements (CREs) of the Fto gene that correlate with transmission of obesity. These CREs show increased interactions in sperm of obese mice with the Irx3 and Irx5 genes, which are involved in the differentiation of appetite-controlling neurons. Deletion of the CTCF site in Fto results in mice that have normal food intake and fail to become obese when ancestrally exposed to BPA. The results suggest that epigenetic alterations of Fto can lead to the same phenotypes as genetic variants.


Assuntos
Fator de Ligação a CCCTC , Epigênese Genética , Obesidade , Sêmen , Animais , Feminino , Masculino , Camundongos , Gravidez , Dioxigenase FTO Dependente de alfa-Cetoglutarato/genética , Compostos Benzidrílicos/toxicidade , Hereditariedade , Obesidade/induzido quimicamente , Obesidade/genética , Fator de Ligação a CCCTC/metabolismo
9.
Proc Natl Acad Sci U S A ; 119(11): e2110614119, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35238662

RESUMO

SignificanceThe dynamics of deleterious variation under contrasting demographic scenarios remain poorly understood in spite of their relevance in evolutionary and conservation terms. Here we apply a genomic approach to study differences in the burden of deleterious alleles between the endangered Iberian lynx (Lynx pardinus) and the widespread Eurasian lynx (Lynx lynx). Our analysis unveils a significantly lower deleterious burden in the former species that should be ascribed to genetic purging, that is, to the increased opportunities of selection against recessive homozygotes due to the inbreeding caused by its smaller population size, as illustrated by our analytical predictions. This research provides theoretical and empirical evidence on the evolutionary relevance of genetic purging under certain demographic conditions.


Assuntos
Espécies em Perigo de Extinção , Lynx/genética , Animais , Evolução Biológica , Variação Genética , Genética Populacional , Endogamia , Mutação , Polimorfismo de Nucleotídeo Único
10.
Nat Immunol ; 13(2): 162-9, 2012 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-22231517

RESUMO

Memory T cells exert antigen-independent effector functions, but how these responses are regulated is unclear. We discovered an in vivo link between flagellin-induced NLRC4 inflammasome activation in splenic dendritic cells (DCs) and host protective interferon-γ (IFN-γ) secretion by noncognate memory CD8(+) T cells, which could be activated by Salmonella enterica serovar Typhimurium, Yersinia pseudotuberculosis and Pseudomonas aeruginosa. We show that CD8α(+) DCs were particularly efficient at sensing bacterial flagellin through NLRC4 inflammasomes. Although this activation released interleukin 18 (IL-18) and IL-1ß, only IL-18 was required for IFN-γ production by memory CD8(+) T cells. Conversely, only the release of IL-1ß, but not IL-18, depended on priming signals mediated by Toll-like receptors. These findings provide a comprehensive mechanistic framework for the regulation of noncognate memory T cell responses during bacterial immunity.


Assuntos
Proteínas Reguladoras de Apoptose/imunologia , Linfócitos T CD8-Positivos/imunologia , Proteínas de Ligação ao Cálcio/imunologia , Células Dendríticas/imunologia , Memória Imunológica , Inflamassomos/imunologia , Interferon gama/imunologia , Animais , Flagelina/imunologia , Interleucina-18/imunologia , Interleucina-1beta/imunologia , Interleucina-1beta/metabolismo , Camundongos , Infecções por Pseudomonas/imunologia , Pseudomonas aeruginosa/imunologia , Salmonelose Animal/imunologia , Salmonella typhimurium/imunologia , Transdução de Sinais/imunologia , Baço/imunologia , Receptores Toll-Like/imunologia , Infecções por Yersinia pseudotuberculosis/imunologia
11.
PLoS Pathog ; 17(2): e1009288, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33529242

RESUMO

Immunity against malaria depends on germinal center (GC)-derived antibody responses that are orchestrated by T follicular helper (TFH) cells. Emerging data show that the regulatory cytokine IL-10 plays an essential role in promoting GC B cell responses during both experimental malaria and virus infections. Here we investigated the cellular source and temporal role of IL-10, and whether IL-10 additionally signals to CD4 T-cells to support anti-Plasmodium humoral immunity. Distinct from reports of virus infection, we found that IL-10 was expressed by conventional, Foxp3-negative effector CD4 T cells and functioned in a B cell-intrinsic manner only during the first 96 hours of Plasmodium infection to support humoral immunity. The critical functions of IL-10 manifested only before the orchestration of GC responses and were primarily localized outside of B cell follicles. Mechanistically, our studies showed that the rapid and transient provision of IL-10 promoted B cell expression of anti-apoptotic factors, MHC class II, CD83, and cell-cell adhesion proteins that are essential for B cell survival and interaction with CD4 T cells. Together, our data reveal temporal features and mechanisms by which IL-10 critically supports humoral immunity during blood-stage Plasmodium infection, information that may be useful for developing new strategies designed to lessen the burden of malaria.


Assuntos
Formação de Anticorpos/imunologia , Antimaláricos/imunologia , Linfócitos T CD4-Positivos/imunologia , Interleucina-10/metabolismo , Ativação Linfocitária/imunologia , Malária/imunologia , Plasmodium yoelii/imunologia , Animais , Linfócitos B/imunologia , Linfócitos B/metabolismo , Linfócitos T CD4-Positivos/metabolismo , Citocinas/metabolismo , Malária/metabolismo , Malária/parasitologia , Camundongos , Camundongos Endogâmicos C57BL , Linfócitos T Auxiliares-Indutores/imunologia , Linfócitos T Auxiliares-Indutores/metabolismo
12.
Int Immunol ; 34(1): 21-33, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34648636

RESUMO

Plasmodium parasites that infect humans are highly polymorphic, and induce various infections ranging from an asymptomatic state to life-threatening diseases. However, how the differences between the parasites affect host immune responses during blood-stage infection remains largely unknown. We investigated the CD4+ T-cell immune responses in mice infected with P. berghei ANKA (PbA) or P. chabaudi chabaudi AS (Pcc) using PbT-II cells, which recognize a common epitope of these parasites. In the acute phase of infection, CD4+ T-cell responses in PbA-infected mice showed a lower involvement of Th1 cells and a lower proportion of Ly6Clo effector CD4+ T cells than those in Pcc-infected mice. Transcriptome analysis of PbT-II cells indicated that type I interferon (IFN)-regulated genes were expressed at higher levels in both Th1- and Tfh-type PbT-II cells from PbA-infected mice than those from Pcc-infected mice. Moreover, IFN-α levels were considerably higher in PbA-infected mice than in Pcc-infected mice. Inhibition of type I IFN signaling increased PbT-II and partially reversed the Th1 over Tfh bias of the PbT-II cells in both PbA- and Pcc-infected mice. In the memory phase, PbT-II cells in PbA-primed mice maintained higher numbers and exhibited a better recall response to the antigen. However, recall responses were not significantly different between the infection groups after re-challenge with PbA, suggesting the effect of the inflammatory environment by the infection. These observations suggest that the differences in Plasmodium-specific CD4+ T-cell responses between PbA- and Pcc-infected mice were associated with the difference in type I IFN production during the early phase of the infection.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Interferon Tipo I/biossíntese , Malária/imunologia , Plasmodium berghei/imunologia , Plasmodium chabaudi/imunologia , Animais , Células Cultivadas , Camundongos , Camundongos Transgênicos
14.
Inorg Chem ; 62(10): 4238-4247, 2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-36858964

RESUMO

Microscopic knowledge of the structural, energetic, and electronic properties of scandium fluoride is still incomplete despite the relevance of this material as an intermediate for the manufacturing of Al-Sc alloys. In a work based on first-principles calculations and X-ray spectroscopy, we assess the stability and electronic structure of six computationally predicted ScF3 polymorphs, two of which correspond to experimentally resolved single-crystal phases. In the theoretical analysis based on density functional theory (DFT), we identify similarities among the polymorphs based on their formation energies, charge-density distribution, and electronic properties (band gaps and density of states). We find striking analogies between the results obtained for the low- and high-temperature phases of the material, indirectly confirming that the transition occurring between them mainly consists of a rigid rotation of the lattice. With this knowledge, we examine the X-ray absorption spectra from the Sc and F K-edge contrasting first-principles results obtained from the solution of the Bethe-Salpeter equation on top of all-electron DFT with high-energy-resolution fluorescence detection measurements. Analysis of the computational results sheds light on the electronic origin of the absorption maxima and provides information on the prominent excitonic effects that characterize all spectra. A comparison with measurements confirms that the sample is mainly composed of the high- and low-temperature polymorphs of ScF3. However, some fine details in the experimental results suggest that the probed powder sample may contain defects and/or residual traces of metastable polymorphs.

15.
J Immunol ; 207(6): 1578-1590, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34400523

RESUMO

In the Plasmodium berghei ANKA mouse model of malaria, accumulation of CD8+ T cells and infected RBCs in the brain promotes the development of experimental cerebral malaria (ECM). In this study, we used malaria-specific transgenic CD4+ and CD8+ T cells to track evolution of T cell immunity during the acute and memory phases of P. berghei ANKA infection. Using a combination of techniques, including intravital multiphoton and confocal microscopy and flow cytometric analysis, we showed that, shortly before onset of ECM, both CD4+ and CD8+ T cell populations exit the spleen and begin infiltrating the brain blood vessels. Although dominated by CD8+ T cells, a proportion of both T cell subsets enter the brain parenchyma, where they are largely associated with blood vessels. Intravital imaging shows these cells moving freely within the brain parenchyma. Near the onset of ECM, leakage of RBCs into areas of the brain can be seen, implicating severe damage. If mice are cured before ECM onset, brain infiltration by T cells still occurs, but ECM is prevented, allowing development of long-term resident memory T cell populations within the brain. This study shows that infiltration of malaria-specific T cells into the brain parenchyma is associated with cerebral immunopathology and the formation of brain-resident memory T cells. The consequences of these resident memory populations is unclear but raises concerns about pathology upon secondary infection.


Assuntos
Barreira Hematoencefálica/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Memória Imunológica , Malária Cerebral/imunologia , Plasmodium berghei/imunologia , Transferência Adotiva/métodos , Animais , Modelos Animais de Doenças , Feminino , Malária Cerebral/parasitologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Parasitemia/imunologia , Baço/imunologia
16.
J Immunol ; 207(7): 1836-1847, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34479944

RESUMO

DEC-205 is a cell-surface receptor that transports bound ligands into the endocytic pathway for degradation or release within lysosomal endosomes. This receptor has been reported to bind a number of ligands, including keratin, and some classes of CpG oligodeoxynucleotides (ODN). In this study, we explore in detail the requirements for binding ODNs, revealing that DEC-205 efficiently binds single-stranded, phosphorothioated ODN of ≥14 bases, with preference for the DNA base thymidine, but with no requirement for a CpG motif. DEC-205 fails to bind double-stranded phosphodiester ODN, and thus does not bind the natural type of DNA found in mammals. The ODN binding preferences of DEC-205 result in strong binding of B class ODN, moderate binding to C class ODN, minimal binding to P class ODN, and no binding to A class ODN. Consistent with DEC-205 binding capacity, induction of serum IL-12p70 or activation of B cells by each class of ODN correlated with DEC-205 dependence in mice. Thus, the greater the DEC-205 binding capacity, the greater the dependence on DEC-205 for optimal responses. Finally, by covalently linking a B class ODN that efficiently binds DEC-205, to a P class ODN that shows poor binding, we improved DEC-205 binding and increased adjuvancy of the hybrid ODN. The hybrid ODN efficiently enhanced induction of effector CD8 T cells in a DEC-205-dependent manner. Furthermore, the hybrid ODN induced robust memory responses, and was particularly effective at promoting the development of liver tissue-resident memory T cells.


Assuntos
Adjuvantes Imunológicos , Oligodesoxirribonucleotídeos , Animais , Células Dendríticas , Interleucina-12 , Fígado , Camundongos
17.
J Infect Dis ; 226(1): 1-5, 2022 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-35297493

RESUMO

Use of interleukin (IL-6) inhibitors has become one of the most complicated clinical issues in treating coronavirus disease 2019 (COVID-19). Recently, randomized open-label platform trials have found that IL-6 inhibitors have a beneficial effect on mortality in severe COVID-19. However, several questions arise around their mechanism of action in this disease, as well as how, when, and at which dose they should be used. IL-6 has both proinflammatory and anti-inflammatory effects, which may modulate the course of COVID-19, whose immunopathogenesis is driven by the innate immune system, autoantibodies, and interferon. Given that patients with delayed seroconversion against the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein would be at the highest risk of complications beyond the second week of disease, we propose that considering patient serostatus at admission could optimize the use of IL-6 inhibitors in COVID-19. We predict that the net treatment benefits could be higher in the subgroup of patients with delayed seroconversion as compared to those who seroconvert more rapidly after SARS-CoV-2 infection.


Assuntos
Tratamento Farmacológico da COVID-19 , SARS-CoV-2 , Anticorpos Monoclonais Humanizados , Humanos , Interleucina-6 , Ensaios Clínicos Controlados Aleatórios como Assunto , Glicoproteína da Espícula de Coronavírus
18.
BMC Bioinformatics ; 23(1): 567, 2022 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-36587217

RESUMO

BACKGROUND: Gene set enrichment analysis (detecting phenotypic terms that emerge as significant in a set of genes) plays an important role in bioinformatics focused on diseases of genetic basis. To facilitate phenotype-oriented gene set analysis, we developed PhenoExam, a freely available R package for tool developers and a web interface for users, which performs: (1) phenotype and disease enrichment analysis on a gene set; (2) measures statistically significant phenotype similarities between gene sets and (3) detects significant differential phenotypes or disease terms across different databases. RESULTS: PhenoExam generates sensitive and accurate phenotype enrichment analyses. It is also effective in segregating gene sets or Mendelian diseases with very similar phenotypes. We tested the tool with two similar diseases (Parkinson and dystonia), to show phenotype-level similarities but also potentially interesting differences. Moreover, we used PhenoExam to validate computationally predicted new genes potentially associated with epilepsy. CONCLUSIONS: We developed PhenoExam, a freely available R package and Web application, which performs phenotype enrichment and disease enrichment analysis on gene set G, measures statistically significant phenotype similarities between pairs of gene sets G and G' and detects statistically significant exclusive phenotypes or disease terms, across different databases. We proved with simulations and real cases that it is useful to distinguish between gene sets or diseases with very similar phenotypes. Github R package URL is https://github.com/alexcis95/PhenoExam . Shiny App URL is https://alejandrocisterna.shinyapps.io/phenoexamweb/ .


Assuntos
Biologia Computacional , Software , Bases de Dados Factuais , Fenótipo , Bases de Dados Genéticas
19.
Eur J Immunol ; 51(5): 1153-1165, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33486759

RESUMO

Malaria remains a major cause of mortality in the world and an efficient vaccine is the best chance of reducing the disease burden. Vaccination strategies for the liver stage of disease that utilise injection of live radiation-attenuated sporozoites (RAS) confer sterile immunity, which is mediated by CD8+ memory T cells, with liver-resident memory T cells (TRM ) being particularly important. We have previously described a TCR transgenic mouse, termed PbT-I, where all CD8+ T cells recognize a specific peptide from Plasmodium. PbT-I form liver TRM cells upon RAS injection and are capable of protecting mice against challenge infection. Here, we utilize this transgenic system to examine whether nonliving sporozoites, killed by heat treatment (HKS), could trigger the development of Plasmodium-specific liver TRM cells. We found that HKS vaccination induced the formation of memory CD8+ T cells in the spleen and liver, and importantly, liver TRM cells were fewer in number than that induced by RAS. Crucially, we showed the number of TRM cells was significantly higher when HKS were combined with the glycolipid α-galactosylceramide as an adjuvant. In the future, this work could lead to development of an antimalaria vaccination strategy that does not require live sporozoites, providing greater utility.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Memória Imunológica , Fígado/imunologia , Vacinas Antimaláricas/imunologia , Malária/imunologia , Malária/parasitologia , Plasmodium/imunologia , Animais , Linfócitos T CD8-Positivos/metabolismo , Modelos Animais de Doenças , Interações Hospedeiro-Parasita/imunologia , Temperatura Alta , Imunização , Vacinas Antimaláricas/administração & dosagem , Camundongos , Camundongos Transgênicos , Vacinas de Produtos Inativados/administração & dosagem , Vacinas de Produtos Inativados/imunologia
20.
NMR Biomed ; 35(8): e4737, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35384092

RESUMO

Prepolarized MRI (PMRI) is a long-established technique conceived to counteract the loss in signal-to-noise ratio (SNR) inherent to low-field MRI systems. When it comes to hard biological tissues and solid-state matter, PMRI is severely restricted by their ultra-short characteristic relaxation times. Here we demonstrate that efficient hard-tissue prepolarization is within reach with a special-purpose 0.26 T scanner designed for ex vivo dental MRI and equipped with suitable high-power electronics. We have characterized the performance of a 0.5 T prepolarizer module, which can be switched on and off in 200 µs. To this end, we have used resin, dental and bone samples, all with T1 times of the order of 20 ms at our field strength. The measured SNR enhancement is in good agreement with a simple theoretical model, and deviations in extreme regimes can be attributed to mechanical vibrations due to the magnetic interaction between the prepolarization and main magnets.


Assuntos
Imageamento por Ressonância Magnética , Magnetismo , Imageamento por Ressonância Magnética/métodos , Imãs , Modelos Teóricos , Razão Sinal-Ruído
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA