Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Oncogene ; 43(5): 319-327, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38030790

RESUMO

Dendritic cells (DCs) play critical roles in recognizing and presenting antigens to T cells. They secrete dendritic cell-derived extracellular vesicles (DC-sEVs), which could mimic the function of DCs. Therefore, we explore the possibility of using DC-sEVs as a potential personalized vaccine in this study. We compared the efficacy of DCs and DC-sEVs on stimulating the immune system to target breast cancer cells and found that DC-sEVs had significantly more MHC molecules on the surface when compared to the parental DCs. In our in vivo and in vitro testing, Dc-sEVs showed significant advantages over DCs, regarding efficacy, safety, storage, and potential delivery advantages. DC-sEVs were able to suppress the growth of immune-cold breast tumors, while DCs failed to do so. These results indicate the strong potential utility of DC-sEVs as a personalized immunotherapy for breast cancer.


Assuntos
Neoplasias da Mama , Vesículas Extracelulares , Humanos , Feminino , Neoplasias da Mama/terapia , Células Dendríticas , Linfócitos T , Imunoterapia/métodos
2.
Waste Manag ; 187: 70-78, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38996621

RESUMO

The optimization of alternative materials in concrete production continues to garner considerable attention in order to meet sustainability goals and supplement natural materials. Portland limestone cement (PLC) and municipal solid waste incineration (MSWI) bottom ash (BA) have been proposed separately as green cement and coarse aggregate supplement in low-strength concrete production, creating sustainable products and alternative disposal scenario for a waste material. This study discusses the impact of advanced ash processing techniques on aggregates and presents the performance of concrete incorporating both of these products with PLC for the first time. Two sources of MSWI BA were investigated, one as-produced (TMR) and one processed with novel advanced metals recovery (AMR). The AMR process reduced total Al content in ash compared to TMR (20,500 vs 17,000 mg/kg), though not aluminum oxide content, as the AMR process targets metallic aluminum. A composition study on both aggregates supports a reduction in ferrous and non-ferrous metals following the AMR process. All control and test mixes met 28-day compressive strength requirements (17 Mpa). Both AMR and TMR MSWI BA-amended concretes yielded compressive strengths below control specimens (no ash) ranging from 17 to 23 MPa, with little to no difference observed dependent on MSWI BA processing. The life-cycle discussion supports benefits deriving from supplementing naturally mined materials and recovering ferrous and nonferrous metals with the AMR process.


Assuntos
Carbonato de Cálcio , Materiais de Construção , Incineração , Resíduos Sólidos , Incineração/métodos , Resíduos Sólidos/análise , Carbonato de Cálcio/química , Metais/análise , Metais/química , Eliminação de Resíduos/métodos , Cinza de Carvão/química , Força Compressiva
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA