Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phys Rev Lett ; 126(8): 083401, 2021 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-33709729

RESUMO

We investigate the photoassociation dynamics of exactly two laser-cooled ^{85}Rb atoms in an optical tweezer and reveal fundamentally different behavior to photoassociation in many-atom ensembles. We observe nonexponential decay in our two-atom experiment that cannot be described by a single rate coefficient and find its origin in our system's pair correlation. This is in stark contrast to many-atom photoassociation dynamics, which are governed by decay with a single rate coefficient. We also investigate photoassociation in a three-atom system, thereby probing the transition from two-atom dynamics to many-atom dynamics. Our experiments reveal additional reaction dynamics that are only accessible through the control of single atoms and suggest photoassociation could measure pair correlations in few-atom systems. It further showcases our complete control over the quantum state of individual atoms and molecules, which provides information unobtainable from many-atom experiments.

2.
Rev Sci Instrum ; 93(4): 043008, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35489881

RESUMO

We present a self-locking laser system that does not require operator interventions. The system automatically finds a desired atomic transition and subsequently locks to it. Moreover, it has the ability to automatically detect if the laser is out of lock and activate the re-locking process. The design was implemented on two different diode lasers, a distributed Bragg reflector (DBR) diode laser and a Fabry Perot (FP) diode laser, used as a repump laser for a magneto-optical trap in a laser cooling experiment and a Raman laser for a four-level Raman transition experiment, respectively. The design relies on frequency modulation transfer spectroscopy to obtain a sub-Doppler atomic spectrum of rubidium-85. This spectrum is then demodulated to obtain zero-crossing linear slopes at the exact points of each atomic and crossover transition. The frequency modulation, the signal analysis, and the automatic locking and re-locking of the lasers are all implemented using an Arduino Due microcontroller. The lock loop has a bandwidth of 7 kHz. The lasers used for the design are characterized, and the robustness of the lock is analyzed. The achieved linewidths of DBR and FP lasers are 1.4 and 5.5 MHz, respectively. The frequency drifts of both lasers are a few 100 kHz over a course of days. The capture range of the locking system is up to 4.9 GHz for the DBR laser and 725 MHz for the FP laser. Both lasers performed well under actual experimental conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA