Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 585(7825): 410-413, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32365354

RESUMO

On 11 March 2020, the World Health Organization (WHO) declared coronavirus disease 2019 (COVID-19) a pandemic1. The strategies based on non-pharmaceutical interventions that were used to contain the outbreak in China appear to be effective2, but quantitative research is still needed to assess the efficacy of non-pharmaceutical interventions and their timings3. Here, using epidemiological data on COVID-19 and anonymized data on human movement4,5, we develop a modelling framework that uses daily travel networks to simulate different outbreak and intervention scenarios across China. We estimate that there were a total of 114,325 cases of COVID-19 (interquartile range 76,776-164,576) in mainland China as of 29 February 2020. Without non-pharmaceutical interventions, we predict that the number of cases would have been 67-fold higher (interquartile range 44-94-fold) by 29 February 2020, and we find that the effectiveness of different interventions varied. We estimate that early detection and isolation of cases prevented more infections than did travel restrictions and contact reductions, but that a combination of non-pharmaceutical interventions achieved the strongest and most rapid effect. According to our model, the lifting of travel restrictions from 17 February 2020 does not lead to an increase in cases across China if social distancing interventions can be maintained, even at a limited level of an on average 25% reduction in contact between individuals that continues until late April. These findings improve our understanding of the effects of non-pharmaceutical interventions on COVID-19, and will inform response efforts across the world.


Assuntos
Busca de Comunicante/métodos , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/prevenção & controle , Desinfecção das Mãos/métodos , Pandemias/prevenção & controle , Pneumonia Viral/epidemiologia , Pneumonia Viral/prevenção & controle , Quarentena/métodos , Isolamento Social , Viagem/legislação & jurisprudência , COVID-19 , China/epidemiologia , Infecções por Coronavirus/transmissão , Humanos , Pneumonia Viral/transmissão , Medição de Risco , Fatores de Tempo
2.
Int J Appl Earth Obs Geoinf ; 131: 103949, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38993519

RESUMO

Timely and precise detection of emerging infections is imperative for effective outbreak management and disease control. Human mobility significantly influences the spatial transmission dynamics of infectious diseases. Spatial sampling, integrating the spatial structure of the target, holds promise as an approach for testing allocation in detecting infections, and leveraging information on individuals' movement and contact behavior can enhance targeting precision. This study introduces a spatial sampling framework informed by spatiotemporal analysis of human mobility data, aiming to optimize the allocation of testing resources for detecting emerging infections. Mobility patterns, derived from clustering point-of-interest and travel data, are integrated into four spatial sampling approaches at the community level. We evaluate the proposed mobility-based spatial sampling by analyzing both actual and simulated outbreaks, considering scenarios of transmissibility, intervention timing, and population density in cities. Results indicate that leveraging inter-community movement data and initial case locations, the proposed Case Flow Intensity (CFI) and Case Transmission Intensity (CTI)-informed spatial sampling enhances community-level testing efficiency by reducing the number of individuals screened while maintaining a high accuracy rate in infection identification. Furthermore, the prompt application of CFI and CTI within cities is crucial for effective detection, especially in highly contagious infections within densely populated areas. With the widespread use of human mobility data for infectious disease responses, the proposed theoretical framework extends spatiotemporal data analysis of mobility patterns into spatial sampling, providing a cost-effective solution to optimize testing resource deployment for containing emerging infectious diseases.

3.
Clin Infect Dis ; 75(1): e234-e240, 2022 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-34549275

RESUMO

BACKGROUND: Modern transportation plays a key role in the spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and new variants. However, little is known about the exact transmission risk of the virus on airplanes. METHODS: Using the itinerary and epidemiological data of coronavirus disease 2019 (COVID-19) cases and close contacts on domestic airplanes departing from Wuhan city in China before the lockdown on 23 January 2020, we estimated the upper and lower bounds of overall transmission risk of COVID-19 among travelers. RESULTS: In total, 175 index cases were identified among 5797 passengers on 177 airplanes. The upper and lower attack rates (ARs) of a seat were 0.60% (34/5622, 95% confidence interval [CI] .43-.84%) and 0.33% (18/5400, 95% CI .21-.53%), respectively. In the upper- and lower-bound risk estimates, each index case infected 0.19 (SD 0.45) and 0.10 (SD 0.32) cases, respectively. The seats immediately adjacent to the index cases had an AR of 9.2% (95% CI 5.7-14.4%), with a relative risk 27.8 (95% CI 14.4-53.7) compared to other seats in the upper limit estimation. The middle seat had the highest AR (0.7%, 95% CI .4%-1.2%). The upper-bound AR increased from 0.7% (95% CI 0.5%-1.0%) to 1.2% (95% CI .4-3.3%) when the co-travel time increased from 2.0 hours to 3.3 hours. CONCLUSIONS: The ARs among travelers varied by seat distance from the index case and joint travel time, but the variation was not significant between the types of aircraft. The overall risk of SARS-CoV-2 transmission during domestic travel on planes was relatively low. These findings can improve our understanding of COVID-19 spread during travel and inform response efforts in the pandemic.


Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/epidemiologia , China/epidemiologia , Controle de Doenças Transmissíveis , Humanos , Pandemias
4.
Int J Appl Earth Obs Geoinf ; 106: 102649, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35110979

RESUMO

Governments worldwide have rapidly deployed non-pharmaceutical interventions (NPIs) to mitigate the COVID-19 pandemic. However, the effect of these individual NPI measures across space and time has yet to be sufficiently assessed, especially with the increase of policy fatigue and the urge for NPI relaxation in the vaccination era. Using the decay ratio in the suppression of COVID-19 infections and multi-source big data, we investigated the changing performance of different NPIs across waves from global and regional levels (in 133 countries) to national and subnational (in the United States of America [USA]) scales before the implementation of mass vaccination. The synergistic effectiveness of all NPIs for reducing COVID-19 infections declined along waves, from 95.4% in the first wave to 56.0% in the third wave recently at the global level and similarly from 83.3% to 58.7% at the USA national level, while it had fluctuating performance across waves on regional and subnational scales. Regardless of geographical scale, gathering restrictions and facial coverings played significant roles in epidemic mitigation before the vaccine rollout. Our findings have important implications for continued tailoring and implementation of NPI strategies, together with vaccination, to mitigate future COVID-19 waves, caused by new variants, and other emerging respiratory infectious diseases.

5.
Malar J ; 18(1): 107, 2019 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-30922301

RESUMO

BACKGROUND: Historically, malaria had been a widespread disease in China. A national plan was launched in China in 2010, aiming to eliminate malaria by 2020. In 2017, no indigenous cases of malaria were detected in China for the first time. To provide evidence for precise surveillance and response to achieve elimination goal, a comprehensive study is needed to determine the changing epidemiology of malaria and the challenges towards elimination. METHODS: Using malaria surveillance data from 2011 to 2016, an integrated series of analyses was conducted to elucidate the changing epidemiological features of autochthonous and imported malaria, and the spatiotemporal patterns of malaria importation from endemic countries. RESULTS: From 2011 to 2016, a total of 21,062 malaria cases with 138 deaths were reported, including 91% were imported and 9% were autochthonous. The geographic distribution of local transmission have shrunk dramatically, but there were still more than 10 counties reporting autochthonous cases in 2013-2016, particularly in counties bordering with countries in South-East Asia. The importation from 68 origins countries had an increasing annual trend from Africa but decreasing importation from Southeast Asia. Four distinct communities have been identified in the importation networks with the destinations in China varied by origin and species. CONCLUSIONS: China is on the verge of malaria elimination, but the residual transmission in border regions and the threats of importation from Africa and Southeast Asia are the key challenges to achieve and maintain malaria elimination. Efforts from China are also needed to help malaria control in origin countries and reduce the risk of introduced transmission.


Assuntos
Erradicação de Doenças , Transmissão de Doença Infecciosa/prevenção & controle , Malária/epidemiologia , Malária/prevenção & controle , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Pré-Escolar , China/epidemiologia , Doenças Transmissíveis Importadas/epidemiologia , Feminino , Humanos , Lactente , Recém-Nascido , Malária/transmissão , Masculino , Pessoa de Meia-Idade , Análise Espaço-Temporal , Topografia Médica , Adulto Jovem
6.
PLoS Comput Biol ; 12(4): e1004846, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27043913

RESUMO

Humans move frequently and tend to carry parasites among areas with endemic malaria and into areas where local transmission is unsustainable. Human-mediated parasite mobility can thus sustain parasite populations in areas where they would otherwise be absent. Data describing human mobility and malaria epidemiology can help classify landscapes into parasite demographic sources and sinks, ecological concepts that have parallels in malaria control discussions of transmission foci. By linking transmission to parasite flow, it is possible to stratify landscapes for malaria control and elimination, as sources are disproportionately important to the regional persistence of malaria parasites. Here, we identify putative malaria sources and sinks for pre-elimination Namibia using malaria parasite rate (PR) maps and call data records from mobile phones, using a steady-state analysis of a malaria transmission model to infer where infections most likely occurred. We also examined how the landscape of transmission and burden changed from the pre-elimination setting by comparing the location and extent of predicted pre-elimination transmission foci with modeled incidence for 2009. This comparison suggests that while transmission was spatially focal pre-elimination, the spatial distribution of cases changed as burden declined. The changing spatial distribution of burden could be due to importation, with cases focused around importation hotspots, or due to heterogeneous application of elimination effort. While this framework is an important step towards understanding progressive changes in malaria distribution and the role of subnational transmission dynamics in a policy-relevant way, future work should account for international parasite movement, utilize real time surveillance data, and relax the steady state assumption required by the presented model.


Assuntos
Malária/epidemiologia , Malária/transmissão , Modelos Biológicos , Telefone Celular/estatística & dados numéricos , Biologia Computacional , Interpretação Estatística de Dados , Migração Humana , Humanos , Malária/prevenção & controle , Namíbia/epidemiologia , Prevalência
7.
Malar J ; 16(1): 359, 2017 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-28886710

RESUMO

BACKGROUND: As Swaziland progresses towards national malaria elimination, the importation of parasites into receptive areas becomes increasingly important. Imported infections have the potential to instigate local transmission and sustain local parasite reservoirs. METHODS: Travel histories from Swaziland's routine surveillance data from January 2010 to June 2014 were extracted and analysed. The travel patterns and demographics of rapid diagnostic test (RDT)-confirmed positive cases identified through passive and reactive case detection (RACD) were analysed and compared to those found to be negative through RACD. RESULTS: Of 1517 confirmed cases identified through passive surveillance, 67% reported travel history. A large proportion of positive cases reported domestic or international travel history (65%) compared to negative cases (10%). The primary risk factor for malaria infection in Swaziland was shown to be travel, more specifically international travel to Mozambique by 25- to 44-year old males, who spent on average 28 nights away. Maputo City, Inhambane and Gaza districts were the most likely travel destinations in Mozambique, and 96% of RDT-positive international travellers were either Swazi (52%) or Mozambican (44%) nationals, with Swazis being more likely to test negative. All international travellers were unlikely to have a bed net at home or use protection of any type while travelling. Additionally, paths of transmission, important border crossings and means of transport were identified. CONCLUSION: Results from this analysis can be used to direct national and well as cross-border targeting of interventions, over space, time and by sub-population. The results also highlight that collaboration between neighbouring countries is needed to tackle the importation of malaria at the regional level.


Assuntos
Malária/epidemiologia , Malária/transmissão , Viagem , Adulto , Controle de Doenças Transmissíveis/estatística & dados numéricos , Emigração e Imigração , Monitoramento Epidemiológico , Essuatíni/epidemiologia , Feminino , Humanos , Malária/prevenção & controle , Masculino , Moçambique , Fatores de Risco , Estações do Ano , África do Sul , Viagem/estatística & dados numéricos
8.
Int J Health Geogr ; 16(1): 25, 2017 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-28724433

RESUMO

BACKGROUND: Household survey data are collected by governments, international organizations, and companies to prioritize policies and allocate billions of dollars. Surveys are typically selected from recent census data; however, census data are often outdated or inaccurate. This paper describes how gridded population data might instead be used as a sample frame, and introduces the R GridSample algorithm for selecting primary sampling units (PSU) for complex household surveys with gridded population data. With a gridded population dataset and geographic boundary of the study area, GridSample allows a two-step process to sample "seed" cells with probability proportionate to estimated population size, then "grows" PSUs until a minimum population is achieved in each PSU. The algorithm permits stratification and oversampling of urban or rural areas. The approximately uniform size and shape of grid cells allows for spatial oversampling, not possible in typical surveys, possibly improving small area estimates with survey results. RESULTS: We replicated the 2010 Rwanda Demographic and Health Survey (DHS) in GridSample by sampling the WorldPop 2010 UN-adjusted 100 m × 100 m gridded population dataset, stratifying by Rwanda's 30 districts, and oversampling in urban areas. The 2010 Rwanda DHS had 79 urban PSUs, 413 rural PSUs, with an average PSU population of 610 people. An equivalent sample in GridSample had 75 urban PSUs, 405 rural PSUs, and a median PSU population of 612 people. The number of PSUs differed because DHS added urban PSUs from specific districts while GridSample reallocated rural-to-urban PSUs across all districts. CONCLUSIONS: Gridded population sampling is a promising alternative to typical census-based sampling when census data are moderately outdated or inaccurate. Four approaches to implementation have been tried: (1) using gridded PSU boundaries produced by GridSample, (2) manually segmenting gridded PSU using satellite imagery, (3) non-probability sampling (e.g. random-walk, "spin-the-pen"), and random sampling of households. Gridded population sampling is in its infancy, and further research is needed to assess the accuracy and feasibility of gridded population sampling. The GridSample R algorithm can be used to forward this research agenda.


Assuntos
Características da Família , Inquéritos Epidemiológicos/métodos , Vigilância da População/métodos , Censos , Inquéritos Epidemiológicos/estatística & dados numéricos , Humanos , Densidade Demográfica , Ruanda/epidemiologia
9.
Malar J ; 15(1): 273, 2016 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-27169470

RESUMO

BACKGROUND: Numerous countries around the world are approaching malaria elimination. Until global eradication is achieved, countries that successfully eliminate the disease will contend with parasite reintroduction through international movement of infected people. Human-mediated parasite mobility is also important within countries near elimination, as it drives parasite flows that affect disease transmission on a subnational scale. METHODS: Movement patterns exhibited in census-based migration data are compared with patterns exhibited in a mobile phone data set from Haiti to quantify how well migration data predict short-term movement patterns. Because short-term movement data were unavailable for Mesoamerica, a logistic regression model fit to migration data from three countries in Mesoamerica is used to predict flows of infected people between subnational administrative units throughout the region. RESULTS: Population flows predicted using census-based migration data correlated strongly with mobile phone-derived movements when used as a measure of relative connectivity. Relative population flows are therefore predicted using census data across Mesoamerica, informing the areas that are likely exporters and importers of infected people. Relative population flows are used to identify community structure, useful for coordinating interventions and elimination efforts to minimize importation risk. Finally, the ability of census microdata inform future intervention planning is discussed in a country-specific setting using Costa Rica as an example. CONCLUSIONS: These results show long-term migration data can effectively predict the relative flows of infected people to direct malaria elimination policy, a particularly relevant result because migration data are generally easier to obtain than short-term movement data such as mobile phone records. Further, predicted relative flows highlight policy-relevant population dynamics, such as major exporters across the region, and Nicaragua and Costa Rica's strong connection by movement of infected people, suggesting close coordination of their elimination efforts. Country-specific applications are discussed as well, such as predicting areas at relatively high risk of importation, which could inform surveillance and treatment strategies.


Assuntos
Censos , Erradicação de Doenças , Transmissão de Doença Infecciosa/prevenção & controle , Migração Humana , Malária/prevenção & controle , Malária/transmissão , Costa Rica , Haiti , Política de Saúde , Humanos , Malária/epidemiologia , Nicarágua/epidemiologia , Viagem
10.
Popul Health Metr ; 14: 35, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27777514

RESUMO

BACKGROUND: Reliable health metrics are crucial for accurately assessing disease burden and planning interventions. Many health indicators are measured through passive surveillance systems and are reliant on accurate estimates of denominators to transform case counts into incidence measures. These denominator estimates generally come from national censuses and use large area growth rates to estimate annual changes. Typically, they do not account for any seasonal fluctuations and thus assume a static denominator population. Many recent studies have highlighted the dynamic nature of human populations through quantitative analyses of mobile phone call data records and a range of other sources, emphasizing seasonal changes. In this study, we use mobile phone data to capture patterns of short-term human population movement and to map dynamism in population densities. METHODS: We show how mobile phone data can be used to measure seasonal changes in health district population numbers, which are used as denominators for calculating district-level disease incidence. Using the example of malaria case reporting in Namibia we use 3.5 years of phone data to investigate the spatial and temporal effects of fluctuations in denominators caused by seasonal mobility on malaria incidence estimates. RESULTS: We show that even in a sparsely populated country with large distances between population centers, such as Namibia, populations are highly dynamic throughout the year. We highlight how seasonal mobility affects malaria incidence estimates, leading to differences of up to 30 % compared to estimates created using static population maps. These differences exhibit clear spatial patterns, with likely overestimation of incidence in the high-prevalence zones in the north of Namibia and underestimation in lower-risk areas when compared to using static populations. CONCLUSION: The results here highlight how health metrics that rely on static estimates of denominators from censuses may differ substantially once mobility and seasonal variations are taken into account. With respect to the setting of malaria in Namibia, the results indicate that Namibia may actually be closer to malaria elimination than previously thought. More broadly, the results highlight how dynamic populations are. In addition to affecting incidence estimates, these changes in population density will also have an impact on allocation of medical resources. Awareness of seasonal movements has the potential to improve the impact of interventions, such as vaccination campaigns or distributions of commodities like bed nets.


Assuntos
Malária/epidemiologia , Dinâmica Populacional , Vigilância da População/métodos , Estações do Ano , Viagem , Telefone Celular , Humanos , Incidência , Namíbia , Dinâmica Populacional/estatística & dados numéricos , Migrantes
11.
Nat Commun ; 14(1): 5270, 2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37644012

RESUMO

Targeted public health interventions for an emerging epidemic are essential for preventing pandemics. During 2020-2022, China invested significant efforts in strict zero-COVID measures to contain outbreaks of varying scales caused by different SARS-CoV-2 variants. Based on a multi-year empirical dataset containing 131 outbreaks observed in China from April 2020 to May 2022 and simulated scenarios, we ranked the relative intervention effectiveness by their reduction in instantaneous reproduction number. We found that, overall, social distancing measures (38% reduction, 95% prediction interval 31-45%), face masks (30%, 17-42%) and close contact tracing (28%, 24-31%) were most effective. Contact tracing was crucial in containing outbreaks during the initial phases, while social distancing measures became increasingly prominent as the spread persisted. In addition, infections with higher transmissibility and a shorter latent period posed more challenges for these measures. Our findings provide quantitative evidence on the effects of public-health measures for zeroing out emerging contagions in different contexts.


Assuntos
COVID-19 , Saúde Pública , Humanos , SARS-CoV-2/genética , COVID-19/epidemiologia , COVID-19/prevenção & controle , Pandemias/prevenção & controle
12.
Res Sq ; 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-38014322

RESUMO

Background: Timely and precise detection of emerging infections is crucial for effective outbreak management and disease control. Human mobility significantly influences infection risks and transmission dynamics, and spatial sampling is a valuable tool for pinpointing potential infections in specific areas. This study explored spatial sampling methods, informed by various mobility patterns, to optimize the allocation of testing resources for detecting emerging infections. Methods: Mobility patterns, derived from clustering point-of-interest data and travel data, were integrated into four spatial sampling approaches to detect emerging infections at the community level. To evaluate the effectiveness of the proposed mobility-based spatial sampling, we conducted analyses using actual and simulated outbreaks under different scenarios of transmissibility, intervention timing, and population density in cities. Results: By leveraging inter-community movement data and initial case locations, the proposed case flow intensity (CFI) and case transmission intensity (CTI)-informed sampling approaches could considerably reduce the number of tests required for both actual and simulated outbreaks. Nonetheless, the prompt use of CFI and CTI within communities is imperative for effective detection, particularly for highly contagious infections in densely populated areas. Conclusions: The mobility-based spatial sampling approach can substantially improve the efficiency of community-level testing for detecting emerging infections. It achieves this by reducing the number of individuals screened while maintaining a high accuracy rate of infection identification. It represents a cost-effective solution to optimize the deployment of testing resources, when necessary, to contain emerging infectious diseases in diverse settings.

13.
Sci Data ; 9(1): 17, 2022 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-35058466

RESUMO

Public and school holidays have important impacts on population mobility and dynamics across multiple spatial and temporal scales, subsequently affecting the transmission dynamics of infectious diseases and many socioeconomic activities. However, worldwide data on public and school holidays for understanding their changes across regions and years have not been assembled into a single, open-source and multitemporal dataset. To address this gap, an open access archive of data on public and school holidays in 2010-2019 across the globe at daily, weekly, and monthly timescales was constructed. Airline passenger volumes across 90 countries from 2010 to 2018 were also assembled to illustrate the usage of the holiday data for understanding the changing spatiotemporal patterns of population movements.

14.
Nat Commun ; 13(1): 3106, 2022 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-35661759

RESUMO

Non-pharmaceutical interventions (NPIs) and vaccination are two fundamental approaches for mitigating the coronavirus disease 2019 (COVID-19) pandemic. However, the real-world impact of NPIs versus vaccination, or a combination of both, on COVID-19 remains uncertain. To address this, we built a Bayesian inference model to assess the changing effect of NPIs and vaccination on reducing COVID-19 transmission, based on a large-scale dataset including epidemiological parameters, virus variants, vaccines, and climate factors in Europe from August 2020 to October 2021. We found that (1) the combined effect of NPIs and vaccination resulted in a 53% (95% confidence interval: 42-62%) reduction in reproduction number by October 2021, whereas NPIs and vaccination reduced the transmission by 35% and 38%, respectively; (2) compared with vaccination, the change of NPI effect was less sensitive to emerging variants; (3) the relative effect of NPIs declined 12% from May 2021 due to a lower stringency and the introduction of vaccination strategies. Our results demonstrate that NPIs were complementary to vaccination in an effort to reduce COVID-19 transmission, and the relaxation of NPIs might depend on vaccination rates, control targets, and vaccine effectiveness concerning extant and emerging variants.


Assuntos
COVID-19 , Teorema de Bayes , COVID-19/epidemiologia , COVID-19/prevenção & controle , Humanos , Pandemias/prevenção & controle , SARS-CoV-2 , Vacinação
15.
Sci Rep ; 11(1): 15389, 2021 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-34321509

RESUMO

Understanding seasonal human mobility at subnational scales has important implications across sciences, from urban planning efforts to disease modelling and control. Assessing how, when, and where populations move over the course of the year, however, requires spatially and temporally resolved datasets spanning large periods of time, which can be rare, contain sensitive information, or may be proprietary. Here, we aim to explore how a set of broadly available covariates can describe typical seasonal subnational mobility in Kenya pre-COVID-19, therefore enabling better modelling of seasonal mobility across low- and middle-income country (LMIC) settings in non-pandemic settings. To do this, we used the Google Aggregated Mobility Research Dataset, containing anonymized mobility flows aggregated over users who have turned on the Location History setting, which is off by default. We combined this with socioeconomic and geospatial covariates from 2018 to 2019 to quantify seasonal changes in domestic and international mobility patterns across years. We undertook a spatiotemporal analysis within a Bayesian framework to identify relevant geospatial and socioeconomic covariates explaining human movement patterns, while accounting for spatial and temporal autocorrelations. Typical pre-pandemic mobility patterns in Kenya mostly consisted of shorter, within-county trips, followed by longer domestic travel between counties and international travel, which is important in establishing how mobility patterns changed post-pandemic. Mobility peaked in August and December, closely corresponding to school holiday seasons, which was found to be an important predictor in our model. We further found that socioeconomic variables including urbanicity, poverty, and female education strongly explained mobility patterns, in addition to geospatial covariates such as accessibility to major population centres and temperature. These findings derived from novel data sources elucidate broad spatiotemporal patterns of how populations move within and beyond Kenya, and can be easily generalized to other LMIC settings before the COVID-19 pandemic. Understanding such pre-pandemic mobility patterns provides a crucial baseline to interpret both how these patterns have changed as a result of the pandemic, as well as whether human mobility patterns have been permanently altered once the pandemic subsides. Our findings outline key correlates of mobility using broadly available covariates, alleviating the data bottlenecks of highly sensitive and proprietary mobile phone datasets, which many researchers do not have access to. These results further provide novel insight on monitoring mobility proxies in the context of disease surveillance and control efforts through LMIC settings.


Assuntos
Dinâmica Populacional/estatística & dados numéricos , Telefone Celular , Sistemas de Informação Geográfica , Humanos , Quênia , Modelos Estatísticos , Fatores de Risco , Estações do Ano , Fatores Socioeconômicos , Análise Espaço-Temporal , Viagem/estatística & dados numéricos
16.
Engineering (Beijing) ; 7(7): 914-923, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33972889

RESUMO

Travel restrictions and physical distancing have been implemented across the world to mitigate the coronavirus disease 2019 (COVID-19) pandemic, but studies are needed to understand their effectiveness across regions and time. Based on the population mobility metrics derived from mobile phone geolocation data across 135 countries or territories during the first wave of the pandemic in 2020, we built a metapopulation epidemiological model to measure the effect of travel and contact restrictions on containing COVID-19 outbreaks across regions. We found that if these interventions had not been deployed, the cumulative number of cases could have shown a 97-fold (interquartile range 79-116) increase, as of May 31, 2020. However, their effectiveness depended upon the timing, duration, and intensity of the interventions, with variations in case severity seen across populations, regions, and seasons. Additionally, before effective vaccines are widely available and herd immunity is achieved, our results emphasize that a certain degree of physical distancing at the relaxation of the intervention stage will likely be needed to avoid rapid resurgences and subsequent lockdowns.

17.
Nat Hum Behav ; 5(6): 695-705, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33603201

RESUMO

The coronavirus disease 2019 (COVID-19) pandemic has posed substantial challenges to the formulation of preventive interventions, particularly since the effects of physical distancing measures and upcoming vaccines on reducing susceptible social contacts and eventually halting transmission remain unclear. Here, using anonymized mobile geolocation data in China, we devise a mobility-associated social contact index to quantify the impact of both physical distancing and vaccination measures in a unified way. Building on this index, our epidemiological model reveals that vaccination combined with physical distancing can contain resurgences without relying on stay-at-home restrictions, whereas a gradual vaccination process alone cannot achieve this. Further, for cities with medium population density, vaccination can reduce the duration of physical distancing by 36% to 78%, whereas for cities with high population density, infection numbers can be well-controlled through moderate physical distancing. These findings improve our understanding of the joint effects of vaccination and physical distancing with respect to a city's population density and social contact patterns.


Assuntos
COVID-19 , Defesa Civil/organização & administração , Controle de Doenças Transmissíveis , Transmissão de Doença Infecciosa/prevenção & controle , Distanciamento Físico , Vacinação , COVID-19/epidemiologia , COVID-19/prevenção & controle , COVID-19/transmissão , China/epidemiologia , Cidades/classificação , Cidades/epidemiologia , Controle de Doenças Transmissíveis/métodos , Controle de Doenças Transmissíveis/organização & administração , Busca de Comunicante/métodos , Busca de Comunicante/estatística & dados numéricos , Prestação Integrada de Cuidados de Saúde , Sistemas de Informação Geográfica/estatística & dados numéricos , Humanos , SARS-CoV-2 , Vacinação/métodos , Vacinação/normas
18.
PeerJ ; 8: e8798, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32377444

RESUMO

Improving rural household access to resources such as markets, schools and healthcare can help alleviate poverty in low-income settings. Current models of geographic accessibility to various resources rarely take individual variation into account due to a lack of appropriate data, yet understanding mobility at an individual level is key to knowing how people access their local resources. Our study used both an activity-specific survey and GPS trackers to evaluate how adults in a rural area of western Kenya accessed local resources. We calculated the travel time and time spent at six different types of resource and compared the GPS and survey data to see how well they matched. We found links between several demographic characteristics and the time spent at different resources, and that the GPS data reflected the survey data well for time spent at some types of resource, but poorly for others. We conclude that demography and activity are important drivers of mobility, and a better understanding of individual variation in mobility could be obtained through the use of GPS trackers on a wider scale.

19.
medRxiv ; 2020 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-32511631

RESUMO

Background: A novel coronavirus (2019-nCoV) emerged in Wuhan City, China, at the end of 2019 and has caused an outbreak of human-to-human transmission with a Public Health Emergency of International Concern declared by the World Health Organization on January 30, 2020. Aim: We aimed to estimate the potential risk and geographic range of Wuhan novel coronavirus (2019-nCoV) spread within and beyond China from January through to April, 2020. Methods: A series of domestic and international travel network-based connectivity and risk analyses were performed, by using de-identified and aggregated mobile phone data, air passenger itinerary data, and case reports. Results: The cordon sanitaire of Wuhan is likely to have occurred during the latter stages of peak population numbers leaving the city before Lunar New Year (LNY), with travellers departing into neighbouring cities and other megacities in China. We estimated that 59,912 air passengers, of which 834 (95% UI: 478 - 1349) had 2019-nCoV infection, travelled from Wuhan to 382 cities outside of mainland China during the two weeks prior to Wuhan's lockdown. The majority of these cities were in Asia, but major hubs in Europe, the US and Australia were also prominent, with strong correlation seen between predicted importation risks and reported cases. Because significant spread has already occurred, a large number of airline travellers (3.3 million under the scenario of 75% travel reduction from normal volumes) may be required to be screened at origin high-risk cities in China and destinations across the globe for the following three months of February to April, 2020 to effectively limit spread beyond its current extent. Conclusion: Further spread of 2019-nCoV within China and international exportation is likely to occur. All countries, especially vulnerable regions, should be prepared for efforts to contain the 2019-nCoV infection.

20.
J Travel Med ; 27(8)2020 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-33094347

RESUMO

BACKGROUND: The COVID-19 pandemic has posed an ongoing global crisis, but how the virus spread across the world remains poorly understood. This is of vital importance for informing current and future pandemic response strategies. METHODS: We performed two independent analyses, travel network-based epidemiological modelling and Bayesian phylogeographic inference, to investigate the intercontinental spread of COVID-19. RESULTS: Both approaches revealed two distinct phases of COVID-19 spread by the end of March 2020. In the first phase, COVID-19 largely circulated in China during mid-to-late January 2020 and was interrupted by containment measures in China. In the second and predominant phase extending from late February to mid-March, unrestricted movements between countries outside of China facilitated intercontinental spread, with Europe as a major source. Phylogenetic analyses also revealed that the dominant strains circulating in the USA were introduced from Europe. However, stringent restrictions on international travel across the world since late March have substantially reduced intercontinental transmission. CONCLUSIONS: Our analyses highlight that heterogeneities in international travel have shaped the spatiotemporal characteristics of the pandemic. Unrestricted travel caused a large number of COVID-19 exportations from Europe to other continents between late February and mid-March, which facilitated the COVID-19 pandemic. Targeted restrictions on international travel from countries with widespread community transmission, together with improved capacity in testing, genetic sequencing and contact tracing, can inform timely strategies for mitigating and containing ongoing and future waves of COVID-19 pandemic.


Assuntos
Viagem Aérea , COVID-19 , Controle de Doenças Transmissíveis , Transmissão de Doença Infecciosa , Saúde Global/estatística & dados numéricos , SARS-CoV-2/isolamento & purificação , Viagem Aérea/estatística & dados numéricos , Viagem Aérea/tendências , Teorema de Bayes , COVID-19/epidemiologia , COVID-19/prevenção & controle , COVID-19/transmissão , Controle de Doenças Transmissíveis/métodos , Controle de Doenças Transmissíveis/organização & administração , Transmissão de Doença Infecciosa/prevenção & controle , Transmissão de Doença Infecciosa/estatística & dados numéricos , Medidas em Epidemiologia , Monitoramento Epidemiológico , Humanos , Filogenia , Análise Espaço-Temporal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA