Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Appl Geochem ; 157: 1-17, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37941778

RESUMO

Contamination from acid mine drainage affects ecosystems and usability of groundwater for domestic and municipal purposes. The Captain Jack Superfund Site outside of Ward, Boulder County, Colorado, USA, hosts a draining mine adit that was remediated through emplacement of a hydraulic bulkhead to preclude acid mine drainage from entering nearby Lefthand Creek. During impoundment of water within the mine workings in 2020, a diverse and novel dataset of stable isotopes of water, sulfate, and carbon (δ2H, δ18OH2O, δ18OSO4, δ34S, δ13CDIC), rare earth elements, and environmental tracers (noble gases and tritium) were collected to understand groundwater recharge and mixing, mechanisms of sulfide oxidation and water-rock interaction, and the influence of remediation on the hydrologic and geochemical system. Water isotopes indicate that groundwater distal from the mine workings has seasonally variable recharge sources whereas water within the workings has a distinctive composition with minimal temporal variability. Sulfate isotopes indicate that sulfide oxidation occurs both within the mine workings and in adjacent igneous dikes, and that sulfide oxidation may occur under suboxic conditions with ferric iron as the oxidant. Carbon isotopes track the neutralization of acidic waters and the carbon mass budget of the system. Rare earth elements corroborate stable isotopes in indicating groundwater compartmentalization, and additionally illustrate enhanced mineral weathering in the mine workings. Environmental tracers indicate mixing of modern and pre-modern groundwater and inform timelines that active remediation may be needed. Together these datasets provide a useful template for similar investigations of abandoned mine sites where physical mixing processes, sources of solute loading, or remediation timeframes are of importance.

2.
Environ Sci Technol ; 54(24): 15742-15750, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33232141

RESUMO

Exceptionally low river flows are predicted to become more frequent and more severe across many global regions as a consequence of climate change. Investigations of trace metal transport dynamics across streamflows reveal stark changes in water chemistry, metal transformation processes, and remediation effectiveness under exceptionally low-flow conditions. High spatial resolution hydrological and water quality datasets indicate that metal-rich groundwater will exert a greater control on stream water chemistry and metal concentrations because of climate change. This is because the proportion of stream water sourced from mined areas and mineralized strata will increase under predicted future low-flow scenarios (from 25% under Q45 flow to 66% under Q99 flow in this study). However, mineral speciation modelling indicates that changes in stream pH and hydraulic conditions at low flow will decrease aqueous metal transport and increase sediment metal concentrations by enhancing metal sorption directly to streambed sediments. Solute transport modelling further demonstrates how increases in the importance of metal-rich diffuse groundwater sources at low flow could minimize the benefits of point source metal contamination treatment. Understanding metal transport dynamics under exceptionally low flows, as well as under high flows, is crucial to evaluate ecosystem service provision and remediation effectiveness in watersheds under future climate change scenarios.


Assuntos
Água Subterrânea , Poluentes Químicos da Água , Ecossistema , Rios , Poluentes Químicos da Água/análise , Qualidade da Água
3.
Environ Sci Technol ; 50(23): 12641-12649, 2016 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-27934261

RESUMO

Low-flow synoptic sampling campaigns are often used as the primary tool to characterize watersheds affected by mining. Although such campaigns are an invaluable part of site characterization, investigations which focus solely on low-flow conditions may yield misleading results. The objective of this paper is to demonstrate this point and elucidate the mechanisms responsible for the release of metals during rainfall runoff. This objective is addressed using data from diel and synoptic sampling campaigns conducted over a two-day period. Low-flow synoptic sampling results indicate that concentrations of most constituents meet aquatic standards. This finding is in contrast to findings from a diel sampling campaign that captured dramatic increases in concentrations during rainfall runoff. Concentrations during the rising limb of the hydrograph were 2-23 times concentrations observed during synoptic sampling (most increases were >10-fold), remaining elevated during the receding limb of the hydrograph to produce a clockwise hysteresis loop. Hydrologic mechanisms responsible for the release of metals include increased transport due to resuspension of streambed solids, erosion of alluvial tailings, and overland flow. Rainfall also elevated the alluvial groundwater table and increased infiltration through the vadose zone, likely resulting in dissolution from alluvial tailings that were dry prior to the event.


Assuntos
Rios , Qualidade da Água , Monitoramento Ambiental , Água Subterrânea , Metais , Montana , Poluentes Químicos da Água
4.
Sci Total Environ ; 876: 162458, 2023 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-36871743

RESUMO

Two synoptic sampling campaigns were conducted to quantify metal loading to Illinois Gulch, a small stream affected by historical mining activities. The first campaign was designed to determine the degree to which Illinois Gulch loses water to the underlying mine workings and to determine the effect of these losses on observed metal loads. The second campaign was designed to evaluate metal loading within Iron Springs, a subwatershed that was responsible for the majority of the metal loading observed during the first campaign. A continuous, constant-rate injection of a conservative tracer was initiated prior to both sampling campaigns and maintained throughout the duration of each study. Tracer concentrations were subsequently used to determine streamflow in gaining stream reaches using the tracer-dilution method, and as an indicator of hydrologic connections between Illinois Gulch and subsurface mine workings. Streamflow losses to the mine workings were quantified during the first campaign using a series of slug additions in which specific conductivity readings were used as a surrogate for tracer concentration. Data from the continuous injections and slug additions were combined to develop spatial streamflow profiles along each study reach. Streamflow estimates were multiplied by observed metal concentrations to yield spatial profiles of metal load that were in turn used to quantify and rank metal sources. Study results indicate that Illinois Gulch loses water to subsurface mine workings and that remedial measures that reduce flow loss (e.g. channel lining) could lessen metal loading from the Iron Springs area. The primary sources of metals to Illinois Gulch include diffuse springs and groundwater, and a draining mine adit. Diffuse sources were determined to have a much larger effect on water quality than other sources that had been the subject of previous investigations due to their visual appearance, supporting the idea that "the truth is in the stream." The overall approach of combining spatially intensive sampling with a rigorous hydrological characterization is applicable to non-mining constituents such as nutrients and pesticides.

5.
Water Res ; 240: 120112, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37257293

RESUMO

While microplastic inputs into rivers are assumed to be correlated with anthropogenic activities and to accumulate towards the sea, the impacts of water management on downstream microplastic transport are largely unexplored. A comparative study of microplastic abundance in Boulder Creek (BC), and its less urbanized tributary South Boulder Creek (SBC), (Colorado USA), characterized the downstream evolution of microplastics in surface water and sediments, evaluating the effects of urbanization and flow diversions on the up-to-downstream profiles of microplastic concentrations and loads. Water and sediment samples were collected from 21 locations along both rivers and microplastic properties determined by fluorescence microscopy and Raman spectroscopy. The degree of catchment urbanization affected microplastic patterns, as evidenced by greater water and sediment concentrations and loads in BC than the less densely populated SBC, which is consistent with the differences in the degree of urbanization between both catchments. Microplastic removal through flow diversions was quantified, showing that water diversions removed over 500 microplastic particles per second from the river, and caused stepwise reductions of downstream loads at diversion points. This redistribution of microplastics back into the catchment should be considered in large scale models quantifying plastic fate and transport to the oceans.


Assuntos
Microplásticos , Poluentes Químicos da Água , Plásticos , Poluentes Químicos da Água/análise , Monitoramento Ambiental , Água , Sedimentos Geológicos/química
6.
Environ Sci Technol ; 46(1): 340-7, 2012 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-22074087

RESUMO

A post audit for a reactive transport model used to evaluate acid mine drainage treatment systems is presented herein. The post audit is based on a paired synoptic approach in which hydrogeochemical data are collected at low (existing conditions) and elevated (following treatment) pH. Data obtained under existing, low-pH conditions are used for calibration, and the resultant model is used to predict metal concentrations observed following treatment. Predictions for Al, As, Fe, H(+), and Pb accurately reproduce the observed reduction in dissolved concentrations afforded by the treatment system, and the information provided in regard to standard attainment is also accurate (predictions correctly indicate attainment or nonattainment of water quality standards for 19 of 25 cases). Errors associated with Cd, Cu, and Zn are attributed to misspecification of sorbent mass (precipitated Fe). In addition to these specific results, the post audit provides insight in regard to calibration and sensitivity analysis that is contrary to conventional wisdom. Steps taken during the calibration process to improve simulations of As sorption were ultimately detrimental to the predictive results, for example, and the sensitivity analysis failed to bracket observed metal concentrations.


Assuntos
Ácidos/química , Recuperação e Remediação Ambiental/métodos , Mineração , Modelos Químicos , Rios/química , Eliminação de Resíduos Líquidos , Simulação por Computador , Minerais/química , Incerteza , Qualidade da Água/normas
7.
Sci Total Environ ; 761: 143314, 2021 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-33187709

RESUMO

Growing worldwide concern over uranium contamination of groundwater resources has placed an emphasis on understanding uranium transport dynamics and potential toxicity in groundwater-surface water systems. In this study, we utilized novel in-situ sampling methods to establish the location and magnitude of contaminated groundwater entry into a receiving surface water environment, and to investigate the speciation and potential bioavailability of uranium in groundwater and surface water. Streambed temperature mapping successfully identified the location of groundwater entry to the Little Wind River, downgradient from the former Riverton uranium mill site, Wyoming, USA. Diffusive equilibrium in thin-film (DET) samplers further constrained the groundwater plume and established sediment pore water solute concentrations and patterns. In this system, evidence is presented for attenuation of uranium-rich groundwater in the shallow sediments where surface water and groundwater interaction occurs. Surface water grab and DET sampling successfully detected an increase in river uranium concentrations where the groundwater plume enters the Little Wind River; however, concentrations remained below environmental guideline levels. Uranium speciation was investigated using diffusive gradients in thin-film (DGT) samplers and geochemical speciation modelling. Together, these investigations indicate uranium may have limited bioavailability to organisms in the Little Wind River and, possibly, in other similar sites in the western U.S.A. This could be due to ion competition effects or the presence of non- or partially labile uranium complexes. Development of methods to establish the location of contaminated (uranium) groundwater entry to surface water environments, and the potential effects on ecosystems, is crucial to develop both site-specific and general conceptual models of uranium behavior and potential toxicity in affected ground and surface water environments.

8.
Environ Sci Pollut Res Int ; 24(20): 17220-17240, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28589273

RESUMO

Combining the synoptic mass balance approach with principal components analysis (PCA) can be an effective method for discretising the chemistry of inflows and source areas in watersheds where contamination is diffuse in nature and/or complicated by groundwater interactions. This paper presents a field-scale study in which synoptic sampling and PCA are employed in a mineralized watershed (Lion Creek, Colorado, USA) under low flow conditions to (i) quantify the impacts of mining activity on stream water quality; (ii) quantify the spatial pattern of constituent loading; and (iii) identify inflow sources most responsible for observed changes in stream chemistry and constituent loading. Several of the constituents investigated (Al, Cd, Cu, Fe, Mn, Zn) fail to meet chronic aquatic life standards along most of the study reach. The spatial pattern of constituent loading suggests four primary sources of contamination under low flow conditions. Three of these sources are associated with acidic (pH <3.1) seeps that enter along the left bank of Lion Creek. Investigation of inflow water (trace metal and major ion) chemistry using PCA suggests a hydraulic connection between many of the left bank inflows and mine water in the Minnesota Mine shaft located to the north-east of the river channel. In addition, water chemistry data during a rainfall-runoff event suggests the spatial pattern of constituent loading may be modified during rainfall due to dissolution of efflorescent salts or erosion of streamside tailings. These data point to the complexity of contaminant mobilisation processes and constituent loading in mining-affected watersheds but the combined synoptic sampling and PCA approach enables a conceptual model of contaminant dynamics to be developed to inform remediation.


Assuntos
Mineração , Poluentes Químicos da Água/análise , Monitoramento Ambiental , Metais , Minnesota , Chuva , Rios , Água
9.
Sci Total Environ ; 574: 1484-1491, 2017 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-27650647

RESUMO

Indium is an increasingly important metal in semiconductors and electronics and has uses in important energy technologies such as photovoltaic cells and light-emitting diodes (LEDs). One significant flux of indium to the environment is from lead, zinc, copper, and tin mining and smelting, but little is known about its aqueous behavior after it is mobilized. In this study, we use Mineral Creek, a headwater stream in southwestern Colorado severely affected by heavy metal contamination as a result of acid mine drainage, as a natural laboratory to study the aqueous behavior of indium. At the existing pH of ~3, indium concentrations are 6-29µg/L (10,000× those found in natural rivers), and are completely filterable through a 0.45µm filter. During a pH modification experiment, the pH of the system was raised to >8, and >99% of the indium became associated with the suspended solid phase (i.e. does not pass through a 0.45µm filter). To determine the mechanism of removal of indium from the filterable and likely primarily dissolved phase, we conducted laboratory experiments to determine an upper bound for a sorption constant to iron oxides, and used this, along with other published thermodynamic constants, to model the partitioning of indium in Mineral Creek. Modeling results suggest that the removal of indium from the filterable phase is consistent with precipitation of indium hydroxide from a dissolved phase. This work demonstrates that nonferrous mining processes can be a significant source of indium to the environment, and provides critical information about the aqueous behavior of indium.

10.
J Contam Hydrol ; 183: 29-39, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26529300

RESUMO

Time-lapse electrical resistivity (ER) was used to capture the dilution of a seasonal pulse of acid mine drainage (AMD) contamination in the subsurface of a wetland downgradient of the abandoned Pennsylvania mine workings in central Colorado. Data were collected monthly from mid-July to late October of 2013, with an additional dataset collected in June of 2014. Inversion of the ER data shows the development through time of multiple resistive anomalies in the subsurface, which corroborating data suggest are driven by changes in total dissolved solids (TDS) localized in preferential flow pathways. Sensitivity analyses on a synthetic model of the site suggest that the anomalies would need to be at least several meters in diameter to be adequately resolved by the inversions. The existence of preferential flow paths would have a critical impact on the extent of attenuation mechanisms at the site, and their further characterization could be used to parameterize reactive transport models in developing quantitative predictions of remediation strategies.


Assuntos
Monitoramento Ambiental/métodos , Hidrologia/métodos , Mineração , Áreas Alagadas , Colorado , Modelos Teóricos , Estações do Ano , Poluentes Químicos da Água/análise
11.
Environ Sci Technol ; 40(19): 5943-9, 2006 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-17051783

RESUMO

The influence of hyporheic zone interactions on the redox state of fulvic acids and other redox active species was investigated in an alpine stream and adjacent wetland, which is a more reducing environment. A tracer injection experiment using bromide (Br-) was conducted in the stream system. Simulations with a transport model showed that rates of exchange between the stream and hyporheic zone were rapid (alpha approximately 10(-3) s(-1)). Parallel factor analysis of fluorescence spectra was used to quantifythe redox state of dissolved fulvic acids. The rate coefficient for oxidation of reduced fulvic acids (lambda = 6.5 x 10(-3) s(-1)) in the stream indicates that electron-transfer reactions occur over short time scales. The rate coefficients for decay of ammonium (lambda = 1.2 x 10(-3) s(-1)) and production of nitrate (lambda = -1.0 x 10(-3) s(-1)) were opposite in sign but almost equal in magnitude. Our results suggest that fulvic acids are involved in rapid electron-transfer processes in and near the stream channel and may be important in determining ecological energy flow at the catchment scale.


Assuntos
Benzopiranos/química , Rios/química , Áreas Alagadas , Bromo/análise , Carbono/análise , Colorado , Nitratos/análise , Oxirredução , Compostos de Amônio Quaternário/análise
12.
Environ Sci Technol ; 36(5): 1093-101, 2002 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-11917996

RESUMO

A reactive transport model based on one-dimensional transport and equilibrium chemistry is applied to synoptic data from an acid mine drainage stream. Model inputs include streamflow estimates based on tracer dilution, inflow chemistry based on synoptic sampling, and equilibrium constants describing acid/base, complexation, precipitation/dissolution, and sorption reactions. The dominant features of observed spatial profiles in pH and metal concentration are reproduced along the 3.5-km study reach by simulating the precipitation of Fe(III) and Al solid phases and the sorption of Cu, As, and Pb onto freshly precipitated iron(III) oxides. Given this quantitative description of existing conditions, additional simulations are conducted to estimate the streamwater quality that could result from two hypothetical remediation plans. Both remediation plans involve the addition of CaCO3 to raise the pH of a small, acidic inflow from approximately 2.4 to approximately 7.0. This pH increase results in a reduced metal load that is routed downstream by the reactive transport model, thereby providing an estimate of post-remediation water quality. The first remediation plan assumes a closed system wherein inflow Fe(II) is not oxidized by the treatment system; under the second remediation plan, an open system is assumed, and Fe(II) is oxidized within the treatment system. Both plans increase instream pH and substantially reduce total and dissolved concentrations of Al, As, Cu, and Fe(II+III) at the terminus of the study reach. Dissolved Pb concentrations are reduced by approximately 18% under the first remediation plan due to sorption onto iron(III) oxides within the treatment system and stream channel. In contrast, iron(III) oxides are limiting under the second remediation plan, and removal of dissolved Pb occurs primarily within the treatment system. This limitation results in an increase in dissolved Pb concentrations over existing conditions as additional downstream sources of Pb are not attenuated by sorption.


Assuntos
Ferro/química , Mineração , Modelos Químicos , Eliminação de Resíduos Líquidos , Poluição da Água/prevenção & controle , Monitoramento Ambiental , Concentração de Íons de Hidrogênio , Metais Pesados , Oxirredução , Movimentos da Água
13.
Environ Sci Technol ; 38(7): 2209-16, 2004 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-15112826

RESUMO

The fate of volatile organic compounds was evaluated in a wastewater-dependent constructed wetland near Phoenix, AZ, using field measurements and solute transport modeling. Numerically based volatilization rates were determined using inverse modeling techniques and hydraulic parameters established by sodium bromide tracer experiments. Theoretical volatilization rates were calculated from the two-film method incorporating physicochemical properties and environmental conditions. Additional analyses were conducted using graphically determined volatilization rates based on field measurements. Transport (with first-order removal) simulations were performed using a range of volatilization rates and were evaluated with respect to field concentrations. The inverse and two-film reactive transport simulations demonstrated excellent agreement with measured concentrations for 1,4-dichlorobenzene, tetrachloroethene, dichloromethane, and trichloromethane and fair agreement for dibromochloromethane, bromodichloromethane, and toluene. Wetland removal efficiencies from inlet to outlet ranged from 63% to 87% for target compounds.


Assuntos
Ecossistema , Hidrocarbonetos/análise , Eliminação de Resíduos Líquidos/métodos , Purificação da Água/métodos , Biodegradação Ambiental , Monitoramento Ambiental , Compostos Orgânicos , Volatilização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA