Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Environ Sci Technol ; 57(17): 6910-6921, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-37074051

RESUMO

Thaw slumps can lead to considerable carbon loss in permafrost regions, while the loss of components from two major origins, i.e., microbial and plant-derived carbon, during this process remains poorly understood. Here, we provide direct evidence that microbial necromass carbon is a major component of lost carbon in a retrogressive permafrost thaw slump by analyzing soil organic carbon (SOC), biomarkers (amino sugars and lignin phenols), and soil environmental variables in a typical permafrost thaw slump in the Tibetan Plateau. The retrogressive thaw slump led to a ∼61% decrease in SOC and a ∼25% SOC stock loss. As evident in the levels of amino sugars (average of 55.92 ± 18.79 mg g-1 of organic carbon, OC) and lignin phenols (average of 15.00 ± 8.05 mg g-1 OC), microbial-derived carbon (microbial necromass carbon) was the major component of the SOC loss, accounting for ∼54% of the SOC loss in the permafrost thaw slump. The variation of amino sugars was mainly related to the changes in soil moisture, pH, and plant input, while changes in lignin phenols were mainly related to the changes in soil moisture and soil bulk density.


Assuntos
Pergelissolo , Solo , Carbono , Tibet , Lignina , Fenóis , Amino Açúcares
2.
J Environ Manage ; 320: 115736, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-35932736

RESUMO

Indoor air pollution (IAP) is one of the leading risk factors for various adverse health outcomes including premature deaths globally. Even though research related to IAP has been carried out, bibliometric studies with particular emphasis on this topic have been lacking. Here, we investigated IAP research from 1990 to 2019 retrieved from the Web of Science database through a comprehensive and systematic scientometric analysis using the CiteSpace 5.7.R2, a powerful tool for visualizing structural, temporal patterns and trends of a scientific field. There was an exponential increase in publications, however, with a stark difference between developed and developing countries. The journals publishing IAP related research had multiple disciplines; 'Indoor Air' journal that focuses solely on IAP issues ranked fifth among top-cited journals. The terms like 'global burden', 'comparative risk assessment,' 'household air pollution (HAP)', 'ventilation', 'respiratory health', 'emission factor', 'impact,' 'energy', 'household', 'India' were the current topical subject where author Kirk R. Smith was identified with a significant contribution. Research related to rural, fossil-fuel toxicity, IAP, and exposure-assessment had the highest citation burst signifying the particular attention of scientific communities to these subjects. Overall, this study examined the evolution of IAP research, identified the gaps and provided future research directions.


Assuntos
Poluição do Ar em Ambientes Fechados , Poluição do Ar , Poluição do Ar em Ambientes Fechados/análise , Culinária , Características da Família , Humanos , Ventilação
3.
Arch Environ Contam Toxicol ; 80(3): 558-566, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33772632

RESUMO

Black carbon (BC) aerosol impacts the air quality, public health, agricultural productivity, weather, monsoon, cryosphere, and climate system from the local to the global scale. However, its distribution over vast Central Asia is poorly known, because it is one of the poorly sampled regions of the world. BC in the soil can be resuspended into the atmosphere and transported to downwind regions with sensitive ecosystems and vulnerable populations, such as from Central Asian countries to the cryospheric regions in the Tianshan Mountain and the Tibetan Plateau, which could accelerate the melting of the snowfields and glaciers. We report the distribution of BC and total organic carbon (TOC) in surface soil with samples collected at multiple sites, for the first time, over three countries in Central Asia (Uzbekistan, Tajikistan, and Kyrgyzstan). The mean BC (TOC) concentrations over three countries were 0.06 ± 0.06 (11.86 ± 4.84) mg g-1, 0.15 ± 0.21 (20.35 ± 10.96) mg g-1, and 0.32 ± 0.29 (26.45 ± 20.38) mg g-1, respectively. They were found to be originated from the same or similar sources, at least over Tajikistan and Kyrgyzstan, as indicated by their high and significant correlation (R2 > 0.6, p < 0.001). The char/soot ratio indicated the diesel and gasoline combustion as dominant BC sources over this region. To gain further insights into the soil BC and its implications to air quality, climate, and cryosphere, future studies should include a wider area over Central Asia with different land-use types and other soil parameters combined with atmospheric simulations for this important yet relatively less studied region of the world.


Assuntos
Poluentes Atmosféricos , Fuligem , Poluentes Atmosféricos/análise , Ásia , Carbono/análise , Ecossistema , Monitoramento Ambiental , Solo , Fuligem/análise , Tadjiquistão
4.
Environ Sci Technol ; 53(10): 5641-5651, 2019 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-30994333

RESUMO

Black carbon (BC) is one of the major drivers of climate change, and its measurement in different environment is crucial for the better understanding of long-term trends in the Himalayan-Tibetan Plateau (HTP) as climate warming has intensified in the region. We present the measurement of BC concentration from six lake sediments in the HTP to reconstruct historical BC deposition since the pre-industrial era. Our results show an increasing trend of BC concurrent with increased anthropogenic emission patterns after the commencement of the industrialization era during the 1950s. Also, sedimentation rates and glacier melt strengthening influenced the total input of BC into the lake. Source identification, based on the char and soot composition of BC, suggests biomass-burning emissions as a major contributor to BC, which is further corroborated by open-fire occurrence events in the region. The increasing BC trend continues to recent years, indicating increasing BC emissions, mainly from South Asia.


Assuntos
Lagos , Fuligem , Ásia , Carbono , Monitoramento Ambiental , Sedimentos Geológicos , Tibet
5.
Bull Environ Contam Toxicol ; 97(6): 855-862, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27734088

RESUMO

This study investigates the contamination levels and risk assessments of 14 elements (Ba, Cd, Co, Cr, Cu, Pb, Li, Mn, Mo, Ni, Sb, Sr, V and Zn) in three sub-basins of Himalayan rivers. Water samples were collected and the hazard quotient (HQ), hazard index (HI), and water quality index (WQI) were calculated. Total average concentrations of the metals were 135.03, 80.10 and 98.34 µg/L in Gandaki, Indrawati and Dudh Koshi rivers, respectively. The results of HQ and HI were less than unity, suggesting a low risk of metals in the region. However, HQ for antimony (Sb) was found to be 4.4 × 10-1, 2.1 × 10-1 and 5.4 × 10-1 in three river basins and HI near unity, suggesting its potential risk. Additionally, HI for Cd in Indrawati was 5.4 × 10-1 also close to unity, suggesting that Cd could have a potential risk to the local residents and aquatic ecosystems. Further, WQI suggested that the rivers Gandaki and Indrawati fell into the excellent water quality and river Dudh Koshi fell into good water quality.


Assuntos
Monitoramento Ambiental , Metais Pesados/análise , Medição de Risco , Rios/química , Poluentes Químicos da Água/análise , Humanos , Nepal , Qualidade da Água
6.
Environ Pollut ; 337: 122535, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37696329

RESUMO

Aerosol optical properties were studied over Chisinau in Moldova, one of the longest running AERONET sites in Eastern Europe. During two decades (September 1999-November 2018), the mean aerosol optical depth (AOD) and Angstrom exponent (AE) were observed as 0.21 ± 0.13 and 1.49 ± 0.29, respectively. The highest AOD (0.24 ± 0.13) and AE (1.60 ± 0.26) were observed during the summer. More than half (∼55%) of the share was occupied by clean continental aerosols with seasonal order of winter (74.8%) > autumn (62%) > spring (48.9%) > summer (44.8%) followed by mixed aerosols with a respective contribution of 30.7% (summer), 28.4% (spring), 22.5 (autumn) and 16.4% (winter). A clear dominance of volume size distribution in the fine mode indicated the stronger influence of anthropogenic activities resulting in fine aerosol load in the atmosphere. The peak in the fine mode was centered at 0.15 µm, whereas that of the coarse mode was centered either at 3.86 µm (summer and autumn) or 5.06 µm (spring and winter). 'Extreme' aerosol events were observed during 21 days with a mean AOD (AE) of 0.99 ± 0.32 (1.43 ± 0.43), whereas 'strong' events were observed during 123 days with a mean AOD (AE) of 0.57 ± 0.07 (1.44 ± 0.40), mainly influenced by anthropogenic aerosols (during 19 and 101 days of each event type) from urban/industrial and biomass burning indicated by high AE and fine mode fraction. During the whole period (excluding events days), the fine and coarse mode peaks were observed at the radius of 0.15 and 5.06 µm, which in the case of extreme (strong) events were at 0.19 (0.15) and 3.86 (2.24) µm respectively. The fine mode volume concentration was 4.78 and 3.32 times higher, whereas the coarse mode volume concentration was higher by a factor of 1.98 and 2.27 during extreme and strong events compared to the whole period.


Assuntos
Poluentes Atmosféricos , Tecnologia de Sensoriamento Remoto , Moldávia , Monitoramento Ambiental/métodos , Europa Oriental , Aerossóis/análise , Poluentes Atmosféricos/análise
7.
Environ Pollut ; 316(Pt 1): 120501, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36283470

RESUMO

Ground-based observational characterization of atmosphere aerosols over Central Asia is very limited. This study investigated the columnar aerosol characteristics over Issyk-Kul, Kyrgyzstan, a background site in Central Asia using the long-term (∼14 years: August 2007-November 2021) data acquired with the Cimel sunphotometer. The mean aerosol optical depth (AOD) and Ångström exponent (AE) during the observation period were 0.14 ± 0.10 and 1.19 ± 0.41, respectively. Both AOD and AE varied across seasons, with highest AOD in spring (0.17 ± 0.17). Regarding the aerosol types, clean continental aerosols were dominant type (65%), followed by mixed aerosols (∼19%), clean marine aerosols (∼14%), dust (0.8%), and urban/industrial and biomass burning aerosol (0.7%). The aerosol volume size distribution was bimodal indicating the influence of both anthropogenic and natural aerosols with clear dominance of coarse mode during the spring season. Mainly dust and mixed aerosols were present during high aerosol episodes while the coarse mode aerosol volume concentration was 7.5 (strong episodes) and ∼19 (extreme episodes) times higher than the whole period average. Aerosol over this background sites were from local and regional sources with some contribution of long-range transport.


Assuntos
Poluentes Atmosféricos , Poluentes Atmosféricos/análise , Monitoramento Ambiental , Aerossóis/análise , Poeira/análise , Ásia
8.
Environ Pollut ; 307: 119468, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35588959

RESUMO

The Community Multi-Scale Air Quality (CMAQ) model was applied to evaluate the air quality in the coastal city of Kannur, India, during the 2020 COVID-19 lockdown. From the Pre1 (March 1-24, 2020) period to the Lock (March 25-April 19, 2020) and Tri (April 20-May 9, 2020) periods, the Kerala state government gradually imposed a strict lockdown policy. Both the simulations and observations showed a decline in the PM2.5 concentrations and an enhancement in the O3 concentrations during the Lock and Tri periods compared with that in the Pre1 period. Integrated process rate (IPR) analysis was employed to isolate the contributions of the individual atmospheric processes. The results revealed that the vertical transport from the upper layers dominated the surface O3 formation, comprising 89.4%, 83.1%, and 88.9% of the O3 sources during the Pre1, Lock, and Tri periods, respectively. Photochemistry contributed negatively to the O3 concentrations at the surface layer. Compared with the Pre1 period, the O3 enhancement during the Lock period was primarily attributable to the lower negative contribution of photochemistry and the lower O3 removal rate by horizontal transport. During the Tri period, a slower consumption of O3 by gas-phase chemistry and a stronger vertical import from the upper layers to the surface accounted for the increase in O3. Emission and aerosol processes constituted the major positive contributions to the net surface PM2.5, accounting for a total of 48.7%, 38.4%, and 42.5% of PM2.5 sources during the Pre1, Lock, and Tri periods, respectively. The decreases in the PM2.5 concentrations during the Lock and Tri periods were primarily explained by the weaker PM2.5 production from emission and aerosol processes. The increased vertical transport rate of PM2.5 from the surface layer to the upper layers was also a reason for the decrease in the PM2.5 during the Lock periods.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , COVID-19 , Ozônio , Aerossóis/análise , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Controle de Doenças Transmissíveis , Surtos de Doenças , Monitoramento Ambiental/métodos , Humanos , Índia , Ozônio/análise , Material Particulado/análise
9.
Environ Pollut ; 268(Pt A): 115907, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33120351

RESUMO

To understand the characteristics of particulate matter (PM) and other air pollutants in Xinjiang, a region with one of the largest sand-shifting deserts in the world and significant natural dust emissions, the concentrations of six air pollutants monitored in 16 cities were analyzed for the period January 2013-June 2019. The annual mean PM2.5, PM10, SO2, NO2, CO, and O3 concentrations ranged from 51.44 to 59.54 µg m-3, 128.43-155.28 µg m-3, 10.99-17.99 µg m-3, 26.27-31.71 µg m-3, 1.04-1.32 mg m-3, and 55.27-65.26 µg m-3, respectively. The highest PM concentrations were recorded in cities surrounding the Taklimakan Desert during the spring season and caused by higher amounts of wind-blown dust from the desert. Coarse PM (PM10-2.5) was predominant, particularly during the spring and summer seasons. The highest PM2.5/PM10 ratio was recorded in most cities during the winter months, indicating the influence of anthropogenic emissions in winters. The annual mean PM2.5 (PM10) concentrations in the study area exceeded the annual mean guidelines recommended by the World Health Organization (WHO) by a factor of ca. ∼5-6 (∼7-8). Very high ambient PM concentrations were recorded during March 19-22, 2019, that gradually influenced the air quality across four different cities, with daily mean PM2.5 (PM10) concentrations ∼8-54 (∼26-115) times higher than the WHO guidelines for daily mean concentrations, and the daily mean coarse PM concentration reaching 4.4 mg m-3. Such high PM2.5 and PM10 concentrations pose a significant risk to public health. These findings call for the formulation of various policies and action plans, including controlling the land degradation and desertification and reducing the concentrations of PM and other air pollutants in the region.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Atmosféricos/análise , Poluição do Ar/análise , China , Cidades , Monitoramento Ambiental , Material Particulado/análise , Estações do Ano
10.
Sci Total Environ ; 706: 135351, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-31855639

RESUMO

Recent studies have revealed the abundance of dissolved organic matter (DOM) in snow/glaciers of the Tibetan Plateau (TP). Here, we present a comprehensive study on the chemical compositions of snowpit samples collected from widely distributed eight glaciers in the western China (six from the TP) to investigate the spatial variation of deposited atmospheric aerosols. An Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) was used to chemically characterize the DOM in snow samples which can offer chemical properties of DOM. Highest mass concentration of dissolved species mass was observed in Tienshan Baishui No 1 glacier (TS, 6.55 ± 0.85 mg/L) close to Takalamagan Desert, whereas lowest (0.89 ± 0.18 mg/L) was observed in Zadang Glacier (ZD) in the central TP. DOM (8-40%) and calcium as well as magnesium (9-67%) were generally the most abundant chemical species. Average DOM concentration in the TP glaciers among the investigated sites were comparable. DOM was found highly oxidized with an oxygen to carbon ratio (O/C ratio) ranging from 0.82 to 1.03. Highly oxidized DOM could have related with aerosol aqueous processes as illustrated by observed organic acids. This study provides insights into the spatial variations of the DOM and dissolved inorganic matter, as well as oxidized organic aerosol, were most likely due to local and regional contribution.

11.
Environ Pollut ; 265(Pt B): 114872, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32497948

RESUMO

This paper presents the results of the study on columnar aerosol optical and physical properties and radiative effects directly observed over Dushanbe, the capital city of Tajikistan, a NASA AERONET site (equipped with a CIMEL sunphotometer) in Central Asia. The average aerosol optical depth (AOD) and Ångström exponent (AE) during the observation period from July 2010 to April 2018 were found to be 0.28 ± 0.20 and 0.82 ± 0.40, respectively. The highest seasonal AOD (0.32 ± 0.24), accompanied by the lowest average AE (0.61 ± 0.25) and fine-mode fraction in AOD (0.39), was observed during summer due to the influence of coarse particles like dust from arid regions. Fine particles were found in significant amounts during winter. The 'mixed aerosol' was identified as the dominant aerosol type with presence of 'dust aerosol' during summer and autumn seasons. Aerosol properties like volume size distribution, single scattering albedo, asymmetry parameter and refractive index suggested the influence of coarse particles (during summer and autumn). Most of the air masses reaching this site transported local and regional emissions, including from beyond Central Asia, explaining the presence of various aerosol types in Dushanbe's atmosphere. The seasonal aerosol radiative forcing efficiency (ARFE) in the atmosphere was found high (>100 Wm-2) and consistent throughout the year. Consequently, this resulted in similar seasonally coherent high atmospheric solar heating rate (HR) of 1.5 K day-1 during summer-autumn-winter, and ca. 0.9 K day-1 during spring season. High ARFE and HR values indicate that atmospheric aerosols could exert significant implications to regional air quality, climate and cryosphere over the central Asian region and downwind Tianshan and Himalaya-Tibetan Plateau mountain regions with sensitive ecosystems.


Assuntos
Poluentes Atmosféricos/análise , Aerossóis/análise , Ecossistema , Monitoramento Ambiental , Estações do Ano , Tadjiquistão
12.
Environ Int ; 144: 106045, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32919285

RESUMO

Atmospheric aerosols are a branch of active research in recent decades. The deposition of light-absorbing substances on high-altitude glaciers causes substantial adverse impacts on the cryospheric environment, cryosphere-hydrology, and climate system. Although, the concentrations of water-soluble organic carbon (WSOC) in snow/ice on glaciers of Tibetan Plateau (TP) have been reported, their transfer processes and optical properties in the context of summer precipitation-atmosphere-snow-river water continuum are seldom studied. In this study, we have systematically examined some scientific issues associated with WSOC concentrations and light absorption properties of WSOC in various forms of samples from the Mt. Yulong region. Statistical results demonstrate that the spatial distribution of WSOC in the snow of Baishui glacier was heterogeneous. The average WSOC concentrations of each snowpit were significantly decreased, and its light-absorbing properties were significantly elevated with the time extension. Aerosol WSOC concentrations and light absorption have distinct spatial disparity and seasonal variation. Pre-monsoon and monsoon have the highest and lowest WSOC content, respectively. Whereas the light-absorbing properties present contrasting seasonal trends. Rivers of which runoff was supplied by glacier meltwater have significantly lower WSOC concentrations (e.g., 0.42 ± 0.03 mg L-1) compared with other forms of water bodies. Mass absorption cross-section of WSOC (MAC-WSOC) in multiple snow and meltwater samples was significantly different and type-dependent. Atmospheric aerosol has the lowest MAC-WSOC value among the four types of samples, which was likely associated with exhaust emissions from private vehicles and tour buses. Statistical results indicated that the average AAE330-400 values of various snow/ice samples are subequal. Snow of glaciers supplies a desirable platform for the deposition of gaseous materials which experienced long-range transport in high altitude zones. Biomass-burning emissions made an immense contribution to the WSOC deposition over the study area, as demonstrated by the distribution of active fire points. However, this preliminary study represents the first systematic investigation of WSOC deposition in southeastern TP. Further robust in-situ field investigations and laboratory measurements are urgently necessary to improve our understanding of the transfer process and optical property of WSOC.


Assuntos
Poluentes Atmosféricos , Neve , Aerossóis/análise , Poluentes Atmosféricos/análise , Carbono/análise , Monitoramento Ambiental , Tibet , Água
13.
Environ Sci Pollut Res Int ; 27(10): 10617-10628, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31940147

RESUMO

Total suspended particles (TSP) were collected in Lumbini from April 2013 to March 2016 to better understand the characteristics of carbonaceous aerosol (CA) concentrations, compositions and sources and their light absorption properties in rural region of severe polluted Indo-Gangetic Plain (IGP). Extremely high TSP (203.9 ± 109.6 µg m-3), organic carbon (OC 32.1 ± 21.7 µg m-3), elemental carbon (EC 6.44 ± 3.17 µg m-3) concentrations were observed in Lumbini particularly during winter and post-monsoon seasons, reflecting the combined influences of emission sources and weather conditions. SO42- (7.34 ± 4.39 µg m-3) and Ca2+ (5.46 ± 5.20 µg m-3) were the most dominant anion and cation in TSP. These components were comparable to those observed in urban areas in South and East Asia but significantly higher than those in remote regions over the Himalayas and Tibetan Plateau, suggesting severe air pollution in the study region. Various combustion activities including industry, vehicle emission, and biomass burning are the main reasons for high pollutant concentrations. The variation of OC/EC ratio further suggested that biomass such as agro-residue burning contributed a lot for CA, particularly during the non-monsoon season. The average mass absorption cross-section of EC (MACEC) and water-soluble organic carbon (MACWSOC) were 7.58 ± 3.39 and 1.52 ± 0.41 m2 g-1, respectively, indicating that CA in Lumbini was mainly affected by local emissions. Increased biomass burning decreased MACEC; whereas, it could result in high MACWSOC during the non-monsoon season. Furthermore, dust is one important factor causing higher MACWSOC during the pre-monsoon season.


Assuntos
Poluentes Atmosféricos/análise , Poluição do Ar , Aerossóis/análise , Biomassa , Carbono/análise , Monitoramento Ambiental , Ásia Oriental , Material Particulado/análise , Estações do Ano
14.
Environ Sci Pollut Res Int ; 26(24): 25386, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31240646

RESUMO

The original publication of this paper contain typographical mistakes. 'Michael Bell' mentioned in this paper should be corrected as 'Michelle L. Bell'.

15.
Environ Sci Pollut Res Int ; 26(13): 13103-13114, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30900125

RESUMO

To give a basic overview of research publications on air pollution and human health, a bibliometric analysis of 2179 documents published during the last two decades (year 1998 to 2017) was carried out. The relevant data was retrieved from the Web of Science Core Collection (WoSCC) and analyzed by using the software such as VOSviewer 1.6.7, Tableau Public 2018.1, and Origin Pro 9.0 for visualization and mapping. The publication trend showed a drastic increase during the second decade. The most productive countries working in the field of air pollution and human health were the USA, China, Italy, England, and Canada, whereas top institutions were Chinese Academy of Sciences, US EPA, Harvard University, Peking University, and University of Sao Paulo. Likewise, leading authors in the context of number of documents published and co-citation were Michael Bell and C. Arden Pope respectively. Majority of the researches were published in the journals like Atmospheric Environment, Science of the Total Environment, and Environmental Science and Pollution Research whereas most common author keywords in the publications were "air pollution," "particulate matter," and "PM2.5."


Assuntos
Poluição do Ar/estatística & dados numéricos , Bibliometria , Saúde Pública , Canadá , China , Inglaterra , Humanos , Itália , Publicações , Pesquisa , Estados Unidos , United States Environmental Protection Agency , Universidades
16.
Environ Sci Pollut Res Int ; 25(15): 14868-14881, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29546514

RESUMO

For the first time, aerosol optical properties are measured over Lumbini, Nepal, with CIMEL sunphotometer of the Aerosol Robotic Network (AERONET) program. Lumbini is a sacred place as the birthplace of Lord Buddha, and thus a UNESCO world heritage site, located near the northern edge of the central Indo-Gangetic Plains (IGP) and before the Himalayan foothills (and Himalayas) to its north. Average aerosol optical depth (AOD) is found to be 0.64 ± 0.38 (0.06-3.28) over the sampling period (January 2013-December 2014), with the highest seasonal AOD during the post-monsoon season (0.72 ± 0.44). More than 80% of the daily averaged AOD values, during the monitoring period, are above 0.3, indicating polluted conditions in the region. The levels of aerosol load observed over Lumbini are comparable to those observed at several heavily polluted sites in the IGP. Based on the relationship between AOD and Ångstrom exponent (α), anthropogenic, biomass burning, and mixed aerosols are found to be the most prevalent aerosol types. The aerosol volume-size distribution is bi-modal during all four seasons with modes centered at 0.1-0.3 and 3-4 µm. For both fine and coarse modes, the highest volumetric concentration of ~ 0.08 µm-3 µm-2 is observed during the post-monsoon and pre-monsoon seasons. As revealed by the single-scattering albedo (SSA), asymmetry parameter (AP), and refractive index (RI) analyses, aerosol loading over Lumbini is dominated by absorbing, urban-industrial, and biomass burning aerosols.


Assuntos
Aerossóis/análise , Poluentes Atmosféricos/análise , Monitoramento Ambiental , Nepal , Estações do Ano
17.
Environ Sci Pollut Res Int ; 24(31): 24454-24472, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28895029

RESUMO

In order to investigate the spatial and temporal variations of aerosols and its soluble chemical compositions of the data gap zone in the central Himalayan region, aerosol samples were collected at four sites. The sampling location were characterized by four different categories, such as urban (Bode), semi-urban site in the northern Indo-Gangetic Plain (Lumbini), rural (Dhunche), and semiarid rural (Jomsom). A total of 230 aerosol samples were collected from four representative sites for a yearlong period and analyzed for water-soluble inorganic ions (WSIIs). The annual average aerosol mass concentration followed the sequence as Bode (238.24 ± 162.24 µg/m3)> Lumbini (161.14 ± 105.95 µg/m3)> Dhunche (112.40 ± 40.30 µg/m3)> Jomsom (78.85 ± 34.28 µg/m3), suggesting heavier particulate pollution in the urban and semi-urban sites. The total soluble ions contributed to 12.61-28.19% of TSP aerosol mass. The results revealed that SO42- and NO3- were the major anion and Ca2+ and NH4+ were the major cation influencing the aerosol composition over the central Himalayas. Calcium played a major role in neutralizing aerosol acidity followed by NH4+ at all the sites. The major compound of aerosol was (NH4)2SO4 and NH4HSO4 in the central Himalayas. Clear seasonality was observed at three observation sites, with higher concentrations during non-monsoon (dry periods) and lower during monsoon (wet period), suggesting washing out of aerosol particles by heavy precipitation during monsoon. In contrast, semiarid sites did not show the clear seasonal trend due to limited precipitation. Stationary sources were predominant over the mobile sources mostly in the remote sites. Principal component analysis confirmed that the major sources of WSIIs in the region were industrial emissions, fossil fuel and biomass burning, and crustal fugitive dusts. Nevertheless, transboundary aerosol transport over the region from polluted cities from south Asia could not be ignored as indicated by the clusters of air mass backward trajectory analysis.


Assuntos
Aerossóis/análise , Poluentes Atmosféricos/análise , Meio Ambiente , Monitoramento Ambiental , Ânions/análise , Cátions/análise , Concentração de Íons de Hidrogênio , Nepal , Estações do Ano , Solubilidade
18.
Sci Total Environ ; 579: 1240-1248, 2017 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-27913014

RESUMO

The Kathmandu Valley, located in the Himalayan foothills in Nepal, is heavily polluted. In order to investigate ambient particulate-bound mercury (Hg) in the Kathmandu Valley, a total 64 total suspended particulates (TSP) samples were collected from a sub-urban site in the Kathmandu Valley, the capital region of Nepal during a sampling period of an entire year (April 2013-April 2014). They were analyzed for ambient particulate-bound Hg (PBM) using thermal desorption combined with cold vapor atomic spectroscopy. In our knowledge, it is the first study of ambient PMB in the Kathmandu Valley and the surrounding broader Himalayan foothill region. The average concentration of PBM over the entire sampling period of a year was found to be 850.5 (±962.8) pg m-3 in the Kathmandu Valley. This is comparable to those values reported in the polluted cities of China and significantly higher than those observed in most of urban areas in Asia and other regions of world. The daily average Hg contents in TSP (PBM/TSP) ranges from 269.7 to 7613.0ngg-1 with an average of 2586.0 (±2072.1) ng g-1, indicating the high enrichment of Hg in TSP. The average concentrations of PBM were higher in the winter and pre-monsoon season than in the monsoon and post-monsoon season. The temporal variations in the strength of anthropogenic emission sources combined with other influencing factors, such as ambient temperature and the removal of atmospheric aerosols by wet scavenging are attributable to the seasonal variations of PBM. The considerably high dry deposition flux of PBM estimated by using a theoretical model was 135µgm-2yr-1 at the Kathmandu Valley. This calls for an immediate attention to addressing ambient particulate Hg in the Kathmandu Valley, including considering it as a key component of future air quality monitoring activities and mitigation measures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA