Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Conserv Biol ; 34(1): 41-53, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31058355

RESUMO

Land-use change via human development is a major driver of biodiversity loss. To reduce these impacts, billions of dollars are spent on biodiversity offsets. However, studies evaluating offset project effectiveness that examine components such as the overall compliance and function of projects remain rare. We reviewed 577 offsetting projects in freshwater ecosystems that included the metrics project size, type of aquatic system (e.g., wetland and creek), offsetting measure (e.g., enhancement, restoration, and creation), and an assessment of the projects' compliance and functional success. Project information was obtained from scientific and government databases and gray literature. Despite considerable investment in offsetting projects, crucial problems persisted. Although compliance and function were related to each other, a high level of compliance did not guarantee a high degree of function. However, large projects relative to area had better function than small projects. Function improved when projects targeted productivity or specific ecosystem features and when multiple complementary management targets were in place. Restorative measures were more likely to achieve targets than creating entirely new ecosystems. Altogether the relationships we found highlight specific ecological processes that may help improve offsetting outcomes.


Cumplimiento y Función Ambiental de las Compensaciones por Biodiversidad en las Aguas Dulces de América del Norte y Europa Resumen El cambio del uso de suelo causado por el desarrollo humano es un causante fundamental de la pérdida de biodiversidad. Para reducir estos impactos se gastan miles de millones de dólares en las compensaciones por biodiversidad. Sin embargo, todavía son raros los estudios de evaluación de la efectividad de los proyectos de compensación que examinen componentes como el cumplimiento general y la función de los proyectos. Revisamos 577 proyectos de compensación en ecosistemas de agua dulce que incluyeran las medidas del tamaño del proyecto, el tipo de ecosistema acuático (p. ej.: arroyo, humedal), la medida de compensación (p. ej.: mejoramiento, restauración, creación) y una evaluación del cumplimiento y el éxito funcional del proyecto. La información sobre los proyectos se obtuvo de bases de datos científicas y del gobierno y de la literatura gris. A pesar de la inversión considerable que existe para los proyectos de compensación persistieron problemas cruciales. Aunque el cumplimiento y la función estuvieron relacionados entre sí, un nivel alto de cumplimiento no garantizó un nivel alto de función. Sin embargo, los proyectos grandes en relación con el área tuvieron una mejor función que los proyectos pequeños. La función incrementó cuando los proyectos se enfocaban en la productividad o en características específicas del ecosistema y cuando los objetivos complementarios de manejo estaban en orden. Las medidas de restauración tuvieron mayor probabilidad de lograr los objetivos que la creación de un ecosistema totalmente nuevo. En general, las relaciones que encontramos resaltan los procesos ecológicos que podrían ayudar a mejorar los resultados de la compensación.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Biodiversidade , Água Doce , Humanos , Estados Unidos , Áreas Alagadas
2.
Glob Chang Biol ; 24(1): e67-e79, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28944520

RESUMO

Anthropogenic activities such as land-use change, pollution and fishing impact the trophic structure of coral reef fishes, which can influence ecosystem health and function. Although these impacts may be ubiquitous, they are not consistent across the tropical Pacific Ocean. Using an extensive database of fish biomass sampled using underwater visual transects on coral reefs, we modelled the impact of human activities on food webs at Pacific-wide and regional (1,000s-10,000s km) scales. We found significantly lower biomass of sharks and carnivores, where there were higher densities of human populations (hereafter referred to as human activity); however, these patterns were not spatially consistent as there were significant differences in the trophic structures of fishes among biogeographic regions. Additionally, we found significant changes in the benthic structure of reef environments, notably a decline in coral cover where there was more human activity. Direct human impacts were the strongest in the upper part of the food web, where we found that in a majority of the Pacific, the biomass of reef sharks and carnivores were significantly and negatively associated with human activity. Finally, although human-induced stressors varied in strength and significance throughout the coral reef food web across the Pacific, socioeconomic variables explained more variation in reef fish trophic structure than habitat variables in a majority of the biogeographic regions. Notably, economic development (measured as GDP per capita) did not guarantee healthy reef ecosystems (high coral cover and greater fish biomass). Our results indicate that human activities are significantly shaping patterns of trophic structure of reef fishes in a spatially nonuniform manner across the Pacific Ocean, by altering processes that organize communities in both "top-down" (fishing of predators) and "bottom-up" (degradation of benthic communities) contexts.


Assuntos
Conservação dos Recursos Naturais , Recifes de Corais , Peixes/classificação , Atividades Humanas , Animais , Biomassa , Cadeia Alimentar , Oceano Pacífico
3.
Conserv Biol ; 31(3): 635-645, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-27901304

RESUMO

Fishing and habitat degradation have increased the extinction risk of sharks, and conservation strategies recognize that survival of juveniles is critical for the effective management of shark populations. Despite the rapid expansion of marine protected areas (MPAs) globally, the paucity of shark-monitoring data on large scales (100s-1000s km) means that the effectiveness of MPAs in halting shark declines remains unclear. Using data collected by baited remote underwater video systems (BRUVS) in northwestern Australia, we developed generalized linear models to elucidate the ecological drivers of habitat suitability for juvenile sharks. We assessed occurrence patterns at the order and species levels. We included all juvenile sharks sampled and the 3 most abundant species sampled separately (grey reef [Carcharhinus amblyrhynchos], sandbar [Carcharhinus plumbeus], and whitetip reef sharks [Triaenodon obesus]). We predicted the occurrence of juvenile sharks across 490,515 km2 of coastal waters and quantified the representation of highly suitable habitats within MPAs. Our species-level models had higher accuracy (ĸ ≥ 0.69) and deviance explained (≥48%) than our order-level model (ĸ = 0.36 and deviance explained of 10%). Maps of predicted occurrence revealed different species-specific patterns of highly suitable habitat. These differences likely reflect different physiological or resource requirements between individual species and validate concerns over the utility of conservation targets based on aggregate species groups as opposed to a species-focused approach. Highly suitable habitats were poorly represented in MPAs with the most restrictions on extractive activities. This spatial mismatch possibly indicates a lack of explicit conservation targets and information on species distribution during the planning process. Non-extractive BRUVS provided a useful platform for building the suitability models across large scales to assist conservation planning across multiple maritime jurisdictions, and our approach provides a simple for method for testing the effectiveness of MPAs.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Tubarões , Animais , Austrália , Ecologia
4.
R Soc Open Sci ; 4(10): 170400, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29134062

RESUMO

Prussian carp (Carassius gibelio) are one of the most noxious non-native species in Eurasia. Recently, Prussian carp, a non-native freshwater fish species, were genetically confirmed in Alberta, Canada and have been rapidly expanding their range in North America since establishment. Given their rapid range expansion, there is an increasing need to determine how Prussian carp may impact native species. We assessed the severity of the Prussian carp invasion by (i) determining their impact on fish communities, (ii) assessing their impact on benthic invertebrate communities, (iii) evaluating if Prussian carp alter abiotic conditions, and (iv) identifying where we find higher abundances of Prussian carp. When Prussian carp were established, we found significant changes to the fish community. Correspondingly, the degree of impact to benthic invertebrate communities was related to the stage of invasion (none, early or recent), where changes in fish communities were significantly concordant with changes in benthic invertebrate communities. Finally, we found that higher abundances of Prussian carp were significantly associated with lower abundances of a majority of native fish species. Altogether, using three lines of evidence, we determine that Prussian carp can have wide-ranging impacts on freshwater ecosystems in North America, pressing the need for management intervention.

5.
Conserv Physiol ; 5(1): cox026, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28480038

RESUMO

Hydrologic alterations, such as dams, culverts or diversions, can introduce new selection pressures on freshwater fishes, where they are required to adapt to novel environmental conditions. Our study investigated how species adapt to natural and altered stream flow, where we use the threatened Rocky Mountain Sculpin (Cottus sp.) as a model organism. We compared the swimming and station-holding performance of Rocky Mountain Sculpin from four different hydrologic regimes in Alberta and British Columbia, including the North Milk River, a system that experiences increased flows from a large-scale diversion. We measured the slip (Uslip) and failure (Uburst) velocities over three constant acceleration test trials. Uslip was defined as the point at which individuals required the addition of bursting or swimming to maintain position. Uburst was defined as the point at which individuals were unable to hold position in the swimming chamber through swimming, bursting or holding techniques without fully or partially resting on the electrified back plate. We found individuals from the Flathead River in British Columbia (with the highest natural flow) failed at significantly higher Uburst velocities than fish from the southern Albertan populations. However, there was no relationship between peak hydrologic flow from the natal river and Uburst or Uslip. Further, Uburst velocities decreased from 51.8 cm s-1 (7.2 BL s-1) to 45.6 cm s-1 (6.3 BL s-1) by the third consecutive test suggesting the use of anaerobic metabolism. Uslip was not different between trials suggesting the use of aerobic metabolism in station-holding behaviours (Uslip). Moreover, we found no significant differences in individuals from the altered North Milk River system. Finally, individual caudal morphological characteristics were related to both slip and failure velocities. Our study contributes to the conservation of Rocky Mountain Sculpin by providing the first documentation of swimming and station-holding abilities of this benthic fish.

6.
R Soc Open Sci ; 4(2): 160611, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28386422

RESUMO

Despite the ecological and economic importance of the Caribbean reef shark (Carcharhinus perezi), little data exist regarding the movements and habitat use of this predator across its range. We deployed 11 pop-up satellite archival tags on Caribbean reef sharks captured in the northeast Exuma Sound, The Bahamas, to assess their horizontal and vertical movements throughout the water column. Sharks showed high site fidelity to The Bahamas suggesting Bahamian subpopulations remain protected within the Bahamian Shark Sanctuary. Depth data indicate that Caribbean reef sharks spent a significant proportion (72-91%) of their time above 50 m in narrow vertical depth bands, which varied considerably on an individual basis. This may be indicative of high site fidelity to specific bathymetric features. Animals exhibited three broadly categorized sporadic off-bank excursions (more than 50 m excursions) down to a depth of 436.1 m, which were more frequent during the night. These deeper excursions during night may be indicative of foraging in relation to prey on mesophotic reefs, as well as diel-vertically migrating prey from the deeper meso- and bathypelagic zones. These vertical movements suggest that Caribbean reef sharks can be significant vectors of ecosystem connectivity further warranting holistic multi-system management and conservation approaches.

7.
PLoS One ; 8(9): e74648, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24058618

RESUMO

Due to human activities, marine and terrestrial ecosystems face a future where disturbances are predicted to occur at a frequency and severity unprecedented in the recent past. Of particular concern is the ability of systems to recover where multiple stressors act simultaneously. We examine this issue in the context of a coral reef ecosystem where increases in stressors, such as fisheries, benthic degradation, cyclones and coral bleaching, are occurring at global scales. By utilizing long-term (decadal) monitoring programs, we examined the combined effects of chronic (removal of sharks) and pulse (cyclones, bleaching) disturbances on the trophic structure of coral reef fishes at two isolated atoll systems off the coast of northwest Australia. We provide evidence consistent with the hypothesis that the loss of sharks can have an impact that propagates down the food chain, potentially contributing to mesopredator release and altering the numbers of primary consumers. Simultaneously, we show how the effects of bottom-up processes of bleaching and cyclones appear to propagate up the food chain through herbivores, planktivores and corallivores, but do not affect carnivores. Because their presence may promote the abundance of herbivores, the removal of sharks by fishing has implications for both natural and anthropogenic disturbances involving the loss of corals, as herbivores are critical to the progress and outcome of coral recovery.


Assuntos
Antozoários/fisiologia , Recifes de Corais , Peixes/fisiologia , Tubarões/fisiologia , Animais , Austrália , Conservação dos Recursos Naturais , Humanos , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA